Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
3 |
+
from langchain_core.messages import HumanMessage, SystemMessage
|
4 |
+
from langchain_core.messages import AIMessage
|
5 |
+
from langchain_community.chat_message_histories import ChatMessageHistory
|
6 |
+
from langchain_core.chat_history import BaseChatMessageHistory
|
7 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
|
12 |
+
# Set your API keys from environment variables
|
13 |
+
langchain_key = os.getenv("LANGCHAIN_API_KEY")
|
14 |
+
HF_key = os.getenv("HUGGINGFACEHUB_TOKEN")
|
15 |
+
LANGCHAIN_TRACING_V2=True
|
16 |
+
LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
|
17 |
+
LANGCHAIN_PROJECT="LLM_CHATBOT"
|
18 |
+
|
19 |
+
os.environ["LANGCHAIN_TRACING_V2"] = str(LANGCHAIN_TRACING_V2)
|
20 |
+
os.environ["LANGCHAIN_API_KEY"] = langchain_key
|
21 |
+
os.environ["HUGGINGFACEHUB_TOKEN"] = HF_key
|
22 |
+
os.environ["LANGCHAIN_ENDPOINT"] = LANGCHAIN_ENDPOINT
|
23 |
+
os.environ["LANGCHAIN_PROJECT"] = LANGCHAIN_PROJECT
|
24 |
+
|
25 |
+
# Initialize the Chat Model
|
26 |
+
llm = HuggingFaceEndpoint(
|
27 |
+
repo_id="microsoft/Phi-3-vision-128k-instruct",
|
28 |
+
task="text-generation",
|
29 |
+
max_new_tokens=150,
|
30 |
+
do_sample=False,
|
31 |
+
token =HF_key
|
32 |
+
)
|
33 |
+
|
34 |
+
# Create a Chat Prompt Template
|
35 |
+
prompt = ChatPromptTemplate.from_messages(
|
36 |
+
[
|
37 |
+
("system", "You are a helpful assistant. Answer all questions to the best of your ability."),
|
38 |
+
MessagesPlaceholder(variable_name="messages"),
|
39 |
+
]
|
40 |
+
)
|
41 |
+
|
42 |
+
# Set up the chain
|
43 |
+
chain = prompt | llm
|
44 |
+
|
45 |
+
# Set up message history
|
46 |
+
store = {}
|
47 |
+
|
48 |
+
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
49 |
+
if session_id not in store:
|
50 |
+
store[session_id] = ChatMessageHistory()
|
51 |
+
return store[session_id]
|
52 |
+
|
53 |
+
with_message_history = RunnableWithMessageHistory(chain, get_session_history)
|
54 |
+
|
55 |
+
# Gradio chat function
|
56 |
+
def chat(session_id, user_input):
|
57 |
+
config = {"configurable": {"session_id": session_id}}
|
58 |
+
human_message = HumanMessage(content=user_input)
|
59 |
+
response = with_message_history.invoke({"messages": [human_message]}, config=config)
|
60 |
+
return response
|
61 |
+
|
62 |
+
# Gradio interface
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=chat,
|
65 |
+
inputs=[gr.Textbox(lines=1, placeholder="Enter Session ID"), gr.Textbox(lines=7, placeholder="Enter your message")],
|
66 |
+
outputs="text",
|
67 |
+
title="LangChain Chatbot",
|
68 |
+
description="A chatbot that remembers your past interactions. Enter your session ID and message."
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the app
|
72 |
+
iface.launch()
|
73 |
+
|