Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,110 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
)
|
46 |
-
|
47 |
-
#
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from keras.models import load_model
|
7 |
+
|
8 |
+
# Set TensorFlow environment variable
|
9 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
10 |
+
|
11 |
+
# Load the pre-trained emotion classification model
|
12 |
+
classifier = load_model(r'Final_Resnet50_Best_model.keras')
|
13 |
+
|
14 |
+
# Initialize the face classifier with the Haar Cascade model for face detection
|
15 |
+
face_classifier = cv2.CascadeClassifier(r'haarcascade_frontalface_default.xml')
|
16 |
+
|
17 |
+
# Define the list of emotion labels
|
18 |
+
emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise']
|
19 |
+
|
20 |
+
# Emotion detection function
|
21 |
+
def detect_emotion(frame):
|
22 |
+
# Convert the frame to grayscale for the face detection
|
23 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
24 |
+
|
25 |
+
# Detect faces in the grayscale frame
|
26 |
+
faces = face_classifier.detectMultiScale(gray)
|
27 |
+
|
28 |
+
# Process each face detected
|
29 |
+
for (x, y, w, h) in faces:
|
30 |
+
# Draw a rectangle around each detected face
|
31 |
+
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2)
|
32 |
+
|
33 |
+
# Extract the region of interest (ROI) as the face area from the grayscale frame
|
34 |
+
roi_gray = gray[y:y+h, x:x+w]
|
35 |
+
roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
|
36 |
+
|
37 |
+
# Proceed if the ROI is not empty
|
38 |
+
if np.sum([roi_gray]) != 0:
|
39 |
+
roi = roi_gray.astype('float') / 255.0 # Normalize pixel values
|
40 |
+
roi = np.expand_dims(roi, axis=0) # Add batch dimension
|
41 |
+
|
42 |
+
# Predict the emotion of the face using the pre-trained model
|
43 |
+
prediction = classifier.predict(roi)[0]
|
44 |
+
label = emotion_labels[prediction.argmax()]
|
45 |
+
label_position = (x, y)
|
46 |
+
|
47 |
+
# Display the predicted emotion label on the frame
|
48 |
+
cv2.putText(frame, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
49 |
+
|
50 |
+
return frame
|
51 |
+
|
52 |
+
# Define the Gradio interface
|
53 |
+
def process_video(video):
|
54 |
+
# Convert the video frame to a format Gradio can handle
|
55 |
+
frame = cv2.cvtColor(video, cv2.COLOR_BGR2RGB)
|
56 |
+
result_frame = detect_emotion(frame)
|
57 |
+
return cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB)
|
58 |
+
|
59 |
+
# Create Gradio Interface
|
60 |
+
gr.Interface(fn=process_video, inputs=gr.inputs.Video(source="webcam", type="numpy"), outputs="video", live=True).launch()
|
61 |
+
|
62 |
+
|
63 |
+
# import numpy as np
|
64 |
+
# from tensorflow.keras.preprocessing.image import img_to_array, load_img
|
65 |
+
# import gradio as gr
|
66 |
+
# import gradio as gr
|
67 |
+
# import tensorflow as tf
|
68 |
+
# import numpy as np
|
69 |
+
# from PIL import Image
|
70 |
+
# import cv2
|
71 |
+
# from tensorflow.keras.preprocessing import image
|
72 |
+
|
73 |
+
# model = tf.keras.models.load_model('Final_Resnet50_Best_model.keras')
|
74 |
+
|
75 |
+
# # Emotion labels dictionary
|
76 |
+
# emotion_labels = {'angry': 0, 'disgust': 1, 'fear': 2, 'happy': 3, 'neutral': 4, 'sad': 5, 'surprise': 6}
|
77 |
+
# index_to_emotion = {v: k for k, v in emotion_labels.items()}
|
78 |
+
|
79 |
+
# def prepare_image(img_pil):
|
80 |
+
# """Preprocess the PIL image to fit your model's input requirements."""
|
81 |
+
# # Convert the PIL image to a numpy array with the target size
|
82 |
+
# img = img_pil.resize((224, 224))
|
83 |
+
# img_array = img_to_array(img)
|
84 |
+
# img_array = np.expand_dims(img_array, axis=0) # Convert single image to a batch.
|
85 |
+
# img_array /= 255.0 # Rescale pixel values to [0,1], as done during training
|
86 |
+
# return img_array
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
# # Define the Gradio interface
|
91 |
+
# def predict_emotion(image):
|
92 |
+
# # Preprocess the image
|
93 |
+
# processed_image = prepare_image(image)
|
94 |
+
# # Make prediction using the model
|
95 |
+
# prediction = model.predict(processed_image)
|
96 |
+
# # Get the emotion label with the highest probability
|
97 |
+
# predicted_class = np.argmax(prediction, axis=1)
|
98 |
+
# predicted_emotion = index_to_emotion.get(predicted_class[0], "Unknown Emotion")
|
99 |
+
# return predicted_emotion
|
100 |
+
|
101 |
+
# interface = gr.Interface(
|
102 |
+
# fn=predict_emotion, # Your prediction function
|
103 |
+
# inputs=gr.Image(type="pil"), # Input for uploading an image, directly compatible with PIL images
|
104 |
+
# outputs="text", # Output as text displaying the predicted emotion
|
105 |
+
# title="Emotion Detection",
|
106 |
+
# description="Upload an image and see the predicted emotion."
|
107 |
+
# )
|
108 |
+
|
109 |
+
# # Launch the Gradio interface
|
110 |
+
# interface.launch()
|