Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,54 +38,3 @@ interface = gr.Interface(
|
|
38 |
|
39 |
# Launch the Gradio interface
|
40 |
interface.launch()
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# import numpy as np
|
45 |
-
# from tensorflow.keras.preprocessing.image import img_to_array, load_img
|
46 |
-
# import gradio as gr
|
47 |
-
# import gradio as gr
|
48 |
-
# import tensorflow as tf
|
49 |
-
# import numpy as np
|
50 |
-
# from PIL import Image
|
51 |
-
# import cv2
|
52 |
-
# from tensorflow.keras.preprocessing import image
|
53 |
-
|
54 |
-
# model = tf.keras.models.load_model('Final_Resnet50_Best_model.keras')
|
55 |
-
|
56 |
-
# # Emotion labels dictionary
|
57 |
-
# emotion_labels = {'angry': 0, 'disgust': 1, 'fear': 2, 'happy': 3, 'neutral': 4, 'sad': 5, 'surprise': 6}
|
58 |
-
# index_to_emotion = {v: k for k, v in emotion_labels.items()}
|
59 |
-
|
60 |
-
# def prepare_image(img_pil):
|
61 |
-
# """Preprocess the PIL image to fit your model's input requirements."""
|
62 |
-
# # Convert the PIL image to a numpy array with the target size
|
63 |
-
# img = img_pil.resize((224, 224))
|
64 |
-
# img_array = img_to_array(img)
|
65 |
-
# img_array = np.expand_dims(img_array, axis=0) # Convert single image to a batch.
|
66 |
-
# img_array /= 255.0 # Rescale pixel values to [0,1], as done during training
|
67 |
-
# return img_array
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# # Define the Gradio interface
|
72 |
-
# def predict_emotion(image):
|
73 |
-
# # Preprocess the image
|
74 |
-
# processed_image = prepare_image(image)
|
75 |
-
# # Make prediction using the model
|
76 |
-
# prediction = model.predict(processed_image)
|
77 |
-
# # Get the emotion label with the highest probability
|
78 |
-
# predicted_class = np.argmax(prediction, axis=1)
|
79 |
-
# predicted_emotion = index_to_emotion.get(predicted_class[0], "Unknown Emotion")
|
80 |
-
# return predicted_emotion
|
81 |
-
|
82 |
-
# interface = gr.Interface(
|
83 |
-
# fn=predict_emotion, # Your prediction function
|
84 |
-
# inputs=gr.Image(type="pil"), # Input for uploading an image, directly compatible with PIL images
|
85 |
-
# outputs="text", # Output as text displaying the predicted emotion
|
86 |
-
# title="Emotion Detection",
|
87 |
-
# description="Upload an image and see the predicted emotion."
|
88 |
-
# )
|
89 |
-
|
90 |
-
# # Launch the Gradio interface
|
91 |
-
# interface.launch()
|
|
|
38 |
|
39 |
# Launch the Gradio interface
|
40 |
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|