|
import streamlit as st
|
|
import os
|
|
import glob
|
|
from typing import Union
|
|
from io import BytesIO
|
|
from typing import List
|
|
from dotenv import load_dotenv
|
|
from multiprocessing import Pool
|
|
from constants import CHROMA_SETTINGS
|
|
import tempfile
|
|
from tqdm import tqdm
|
|
import argparse
|
|
import time
|
|
from PIL import Image
|
|
from langchain.chains import RetrievalQA
|
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
from langchain.docstore.document import Document
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter
|
|
from langchain_community.vectorstores import FAISS,Chroma
|
|
from langchain_community.llms import Ollama
|
|
from langchain_cohere import CohereEmbeddings
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
css = '''
|
|
<style>
|
|
.chat-message {
|
|
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
|
|
}
|
|
.chat-message.user {
|
|
background-color: #2b313e
|
|
}
|
|
.chat-message.bot {
|
|
background-color: #475063
|
|
}
|
|
.chat-message .avatar {
|
|
width: 20%;
|
|
}
|
|
.chat-message .avatar img {
|
|
max-width: 78px;
|
|
max-height: 78px;
|
|
border-radius: 50%;
|
|
object-fit: cover;
|
|
}
|
|
.chat-message .message {
|
|
width: 80%;
|
|
padding: 0 1.5rem;
|
|
color: #fff;
|
|
}
|
|
'''
|
|
|
|
bot_template = '''
|
|
<div class="chat-message bot">
|
|
<div class="avatar">
|
|
<img src="https://i.pinimg.com/originals/0c/67/5a/0c675a8e1061478d2b7b21b330093444.gif" style="max-height: 70px; max-width: 50px; border-radius: 50%; object-fit: cover;">
|
|
</div>
|
|
<div class="message">{{MSG}}</div>
|
|
</div>
|
|
'''
|
|
|
|
|
|
user_template = '''
|
|
<div class="chat-message user">
|
|
<div class="avatar">
|
|
<img src="https://th.bing.com/th/id/OIP.uDqZFTOXkEWF9PPDHLCntAHaHa?pid=ImgDet&rs=1" style="max-height: 80px; max-width: 50px; border-radius: 50%; object-fit: cover;">
|
|
</div>
|
|
<div class="message">{{MSG}}</div>
|
|
</div>
|
|
'''
|
|
|
|
|
|
chunk_size = 500
|
|
chunk_overlap = 50
|
|
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
|
print(persist_directory)
|
|
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
|
target_source_chunks= int(os.environ.get('TARGET_SOURCE_CHUNKS', 5))
|
|
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
|
|
model_type=os.environ.get('MODEL_TYPE')
|
|
|
|
|
|
from langchain_community.document_loaders import (
|
|
CSVLoader,
|
|
PyMuPDFLoader,
|
|
TextLoader)
|
|
|
|
|
|
|
|
LOADER_MAPPING = {
|
|
".csv": (CSVLoader, {}),
|
|
".pdf": (PyMuPDFLoader, {}),
|
|
".txt": (TextLoader, {"encoding": "utf8"}),
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_single_document(file_content: BytesIO, file_type:str) -> List[Document]:
|
|
ext = "." + file_type.rsplit("/", 1)[1]
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as temp_file:
|
|
temp_file.write(file_content.getvalue())
|
|
temp_file_path = temp_file.name
|
|
|
|
if ext in LOADER_MAPPING:
|
|
loader_class, loader_args = LOADER_MAPPING[ext]
|
|
loader = loader_class(temp_file_path, **loader_args)
|
|
results = loader.load()
|
|
os.remove(temp_file_path)
|
|
return results
|
|
|
|
raise ValueError(f"Unsupported file extension '{ext}'")
|
|
|
|
|
|
|
|
def load_uploaded_documents(uploaded_files, uploaded_files_type, ignored_files: List[str] = []) -> List[Document]:
|
|
with Pool(processes=os.cpu_count()) as pool:
|
|
results = []
|
|
with tqdm(total=len(uploaded_files), desc='Loading new documents', ncols=80) as progress_bar:
|
|
for i, uploaded_file in enumerate(uploaded_files):
|
|
file_type = uploaded_files_type[i]
|
|
file_content=BytesIO(uploaded_file.read())
|
|
docs = load_single_document(file_content, file_type)
|
|
results.extend(docs)
|
|
progress_bar.update()
|
|
return results
|
|
|
|
|
|
def get_pdf_text(uploaded_files):
|
|
ignored_files = []
|
|
|
|
uploaded_files_list = [file for file in uploaded_files]
|
|
uploaded_files_type = [file.type for file in uploaded_files]
|
|
results = load_uploaded_documents(uploaded_files_list, uploaded_files_type, ignored_files)
|
|
return results
|
|
|
|
|
|
|
|
|
|
def does_vectorstore_exist(persist_directory: str) -> bool:
|
|
"""
|
|
Checks if vectorstore exists
|
|
"""
|
|
if os.path.exists(os.path.join(persist_directory, 'index')):
|
|
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
|
|
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
|
|
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
|
|
|
|
if len(list_index_files) > 0:
|
|
print("Yes vectorstore exists")
|
|
return True
|
|
return False
|
|
|
|
|
|
|
|
def get_text_chunks(results,chunk_size,chunk_overlap):
|
|
texts=[]
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
texts = text_splitter.split_documents(results)
|
|
return texts
|
|
|
|
|
|
def get_vectorstore(results,embeddings_model_name,persist_directory,client_settings,chunk_size,chunk_overlap):
|
|
if embeddings_model_name == "openai":
|
|
embeddings = OpenAIEmbeddings()
|
|
print('OpenAI embeddings loaded')
|
|
elif embeddings_model_name == "Cohereembeddings":
|
|
embeddings = CohereEmbeddings()
|
|
print('Cohere embeddings loaded')
|
|
|
|
if does_vectorstore_exist(persist_directory):
|
|
|
|
print(f"Appending to existing vectorstore at {persist_directory}")
|
|
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
|
collection = db.get()
|
|
|
|
|
|
texts=get_text_chunks(results,chunk_size=chunk_size,chunk_overlap=chunk_overlap)
|
|
if len(texts)>0:
|
|
db.add_documents(texts)
|
|
else:
|
|
|
|
print("Creating new vectorstore")
|
|
print(f"Creating embeddings. May take some minutes...")
|
|
texts=get_text_chunks(results,chunk_size=chunk_size,chunk_overlap=chunk_overlap)
|
|
|
|
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
|
db.add_documents(texts)
|
|
|
|
return db
|
|
|
|
|
|
def get_conversation_chain(vectorstore,target_source_chunks,model_type):
|
|
retriever = vectorstore.as_retriever(search_kwargs={"k": target_source_chunks})
|
|
|
|
|
|
|
|
|
|
|
|
match model_type:
|
|
case "OpenaAI":
|
|
llm= ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
|
case "Llama3":
|
|
llm = Ollama(model="llama3")
|
|
case _default:
|
|
|
|
raise Exception(f"Model type {model_type} is not supported. Please choose one of the following: ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
memory = ConversationBufferMemory(
|
|
memory_key='chat_history', return_messages=True)
|
|
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
llm=llm,
|
|
retriever=retriever,
|
|
memory=memory
|
|
)
|
|
return conversation_chain
|
|
|
|
|
|
st.set_page_config(page_title="Generate Insights",page_icon=":bar_chart:")
|
|
|
|
|
|
def handle_userinput(user_question):
|
|
response = st.session_state.conversation({'question': user_question})
|
|
st.session_state.chat_history = response['chat_history']
|
|
|
|
for i, message in enumerate(st.session_state.chat_history):
|
|
if i % 2 == 0:
|
|
st.write(user_template.replace(
|
|
"{{MSG}}", message.content), unsafe_allow_html=True)
|
|
else:
|
|
st.write(bot_template.replace(
|
|
"{{MSG}}", message.content), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
def add_logo(logo_path, width, height):
|
|
"""Read and return a resized logo"""
|
|
logo = Image.open(logo_path)
|
|
modified_logo = logo.resize((width, height))
|
|
return modified_logo
|
|
|
|
st.markdown(f'<style>{css}</style>', unsafe_allow_html=True)
|
|
col1, col2,col3,col4,col5,col6 = st.columns(6)
|
|
|
|
with col5:
|
|
my_logo = add_logo(logo_path="CampusX.jfif", width=100, height=20)
|
|
st.image(my_logo)
|
|
with col6:
|
|
pg_logo=add_logo(logo_path="Q&A logo.jfif", width=60, height=40)
|
|
st.image(pg_logo)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
load_dotenv()
|
|
css2 = '''
|
|
<style>
|
|
[data-testid="stSidebar"]{
|
|
min-width: 300px;
|
|
max-width: 300px;
|
|
}
|
|
</style>
|
|
'''
|
|
st.markdown(css2, unsafe_allow_html=True)
|
|
|
|
st.write(css, unsafe_allow_html=True)
|
|
|
|
if "conversation" not in st.session_state:
|
|
st.session_state.conversation = None
|
|
if "chat_history" not in st.session_state:
|
|
st.session_state.chat_history = None
|
|
|
|
st.header(":blue Generate Insights :bar_chart:")
|
|
user_question = st.text_input("Ask a question about your documents:")
|
|
if user_question:
|
|
handle_userinput(user_question)
|
|
|
|
with st.sidebar:
|
|
st.subheader("Your documents")
|
|
uploaded_files = st.file_uploader("Upload documents", type=["pdf", "xlsx",'csv'], accept_multiple_files=True)
|
|
|
|
|
|
if st.button("Process"):
|
|
with st.spinner("Processing"):
|
|
|
|
|
|
if uploaded_files is not None :
|
|
raw_text = get_pdf_text(uploaded_files=uploaded_files)
|
|
|
|
|
|
text_chunks = get_text_chunks(results=raw_text,chunk_size=chunk_size,chunk_overlap=chunk_overlap)
|
|
|
|
|
|
vectorstore = get_vectorstore(results=text_chunks,embeddings_model_name=embeddings_model_name,persist_directory=persist_directory,client_settings=CHROMA_SETTINGS,chunk_size=chunk_size,chunk_overlap=chunk_overlap)
|
|
|
|
|
|
st.session_state.conversation = get_conversation_chain(vectorstore=vectorstore,target_source_chunks=target_source_chunks,model_type=model_type)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|
|
|