|
import streamlit as st |
|
import os |
|
import glob |
|
from typing import Union |
|
from io import BytesIO |
|
from typing import List |
|
from dotenv import load_dotenv |
|
from multiprocessing import Pool |
|
from constants import CHROMA_SETTINGS |
|
import tempfile |
|
from tqdm import tqdm |
|
import argparse |
|
import time |
|
from PIL import Image |
|
from langchain.chains import RetrievalQA |
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.docstore.document import Document |
|
from langchain_community.embeddings import OpenAIEmbeddings |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import FAISS,Chroma |
|
from langchain_community.llms import Ollama |
|
from langchain_cohere import CohereEmbeddings |
|
|
|
|
|
os.environ['LANGCHAIN_API_KEY'] = os.getenv('LANGCHAIN_API_KEY') |
|
|
|
os.environ['COHERE_API_KEY'] = os.getenv('COHERE_API_KEY') |
|
|
|
|
|
css = ''' |
|
<style> |
|
.chat-message { |
|
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex |
|
} |
|
.chat-message.user { |
|
background-color: #2b313e |
|
} |
|
.chat-message.bot { |
|
background-color: #475063 |
|
} |
|
.chat-message .avatar { |
|
width: 20%; |
|
} |
|
.chat-message .avatar img { |
|
max-width: 78px; |
|
max-height: 78px; |
|
border-radius: 50%; |
|
object-fit: cover; |
|
} |
|
.chat-message .message { |
|
width: 80%; |
|
padding: 0 1.5rem; |
|
color: #fff; |
|
} |
|
''' |
|
|
|
bot_template = ''' |
|
<div class="chat-message bot"> |
|
<div class="avatar"> |
|
<img src="https://i.pinimg.com/originals/0c/67/5a/0c675a8e1061478d2b7b21b330093444.gif" style="max-height: 70px; max-width: 50px; border-radius: 50%; object-fit: cover;"> |
|
</div> |
|
<div class="message">{{MSG}}</div> |
|
</div> |
|
''' |
|
|
|
|
|
user_template = ''' |
|
<div class="chat-message user"> |
|
<div class="avatar"> |
|
<img src="https://th.bing.com/th/id/OIP.uDqZFTOXkEWF9PPDHLCntAHaHa?pid=ImgDet&rs=1" style="max-height: 80px; max-width: 50px; border-radius: 50%; object-fit: cover;"> |
|
</div> |
|
<div class="message">{{MSG}}</div> |
|
</div> |
|
''' |
|
|
|
|
|
chunk_size = 500 |
|
chunk_overlap = 50 |
|
persist_directory = os.environ.get('PERSIST_DIRECTORY') |
|
print(persist_directory) |
|
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents') |
|
target_source_chunks= int(os.environ.get('TARGET_SOURCE_CHUNKS', 5)) |
|
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME') |
|
model_type=os.environ.get('MODEL_TYPE') |
|
|
|
|
|
from langchain_community.document_loaders import ( |
|
CSVLoader, |
|
PyMuPDFLoader, |
|
TextLoader) |
|
|
|
|
|
|
|
LOADER_MAPPING = { |
|
".csv": (CSVLoader, {}), |
|
".pdf": (PyMuPDFLoader, {}), |
|
".txt": (TextLoader, {"encoding": "utf8"}), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_single_document(file_content: BytesIO, file_type:str) -> List[Document]: |
|
ext = "." + file_type.rsplit("/", 1)[1] |
|
|
|
with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as temp_file: |
|
temp_file.write(file_content.getvalue()) |
|
temp_file_path = temp_file.name |
|
|
|
if ext in LOADER_MAPPING: |
|
loader_class, loader_args = LOADER_MAPPING[ext] |
|
loader = loader_class(temp_file_path, **loader_args) |
|
results = loader.load() |
|
os.remove(temp_file_path) |
|
return results |
|
|
|
raise ValueError(f"Unsupported file extension '{ext}'") |
|
|
|
|
|
|
|
def load_uploaded_documents(uploaded_files, uploaded_files_type, ignored_files: List[str] = []) -> List[Document]: |
|
with Pool(processes=os.cpu_count()) as pool: |
|
results = [] |
|
with tqdm(total=len(uploaded_files), desc='Loading new documents', ncols=80) as progress_bar: |
|
for i, uploaded_file in enumerate(uploaded_files): |
|
file_type = uploaded_files_type[i] |
|
file_content=BytesIO(uploaded_file.read()) |
|
docs = load_single_document(file_content, file_type) |
|
results.extend(docs) |
|
progress_bar.update() |
|
return results |
|
|
|
|
|
def get_pdf_text(uploaded_files): |
|
ignored_files = [] |
|
|
|
uploaded_files_list = [file for file in uploaded_files] |
|
uploaded_files_type = [file.type for file in uploaded_files] |
|
results = load_uploaded_documents(uploaded_files_list, uploaded_files_type, ignored_files) |
|
return results |
|
|
|
|
|
|
|
|
|
def does_vectorstore_exist(persist_directory: str) -> bool: |
|
""" |
|
Checks if vectorstore exists |
|
""" |
|
if os.path.exists(os.path.join(persist_directory, 'index')): |
|
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')): |
|
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin')) |
|
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl')) |
|
|
|
if len(list_index_files) > 0: |
|
print("Yes vectorstore exists") |
|
return True |
|
return False |
|
|
|
|
|
|
|
def get_text_chunks(results,chunk_size,chunk_overlap): |
|
texts=[] |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
texts = text_splitter.split_documents(results) |
|
return texts |
|
|
|
|
|
def get_vectorstore(results,embeddings_model_name,persist_directory,client_settings,chunk_size,chunk_overlap): |
|
if embeddings_model_name == "openai": |
|
embeddings = OpenAIEmbeddings() |
|
print('OpenAI embeddings loaded') |
|
elif embeddings_model_name == "Cohereembeddings": |
|
embeddings = CohereEmbeddings() |
|
print('Cohere embeddings loaded') |
|
|
|
if does_vectorstore_exist(persist_directory): |
|
|
|
print(f"Appending to existing vectorstore at {persist_directory}") |
|
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS) |
|
collection = db.get() |
|
|
|
|
|
texts=get_text_chunks(results,chunk_size=chunk_size,chunk_overlap=chunk_overlap) |
|
if len(texts)>0: |
|
db.add_documents(texts) |
|
else: |
|
|
|
print("Creating new vectorstore") |
|
print(f"Creating embeddings. May take some minutes...") |
|
texts=get_text_chunks(results,chunk_size=chunk_size,chunk_overlap=chunk_overlap) |
|
|
|
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) |
|
db.add_documents(texts) |
|
|
|
return db |
|
|
|
|
|
def get_conversation_chain(vectorstore,target_source_chunks,model_type): |
|
retriever = vectorstore.as_retriever(search_kwargs={"k": target_source_chunks}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm = Ollama(model = 'llama3:8b') |
|
|
|
|
|
|
|
|
|
memory = ConversationBufferMemory( |
|
memory_key='chat_history', return_messages=True) |
|
conversation_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=retriever, |
|
memory=memory |
|
) |
|
return conversation_chain |
|
|
|
|
|
st.set_page_config(page_title="Generate Insights",page_icon=":bar_chart:") |
|
|
|
|
|
def handle_userinput(user_question): |
|
response = st.session_state.conversation({'question': user_question}) |
|
st.session_state.chat_history = response['chat_history'] |
|
|
|
for i, message in enumerate(st.session_state.chat_history): |
|
if i % 2 == 0: |
|
st.write(user_template.replace( |
|
"{{MSG}}", message.content), unsafe_allow_html=True) |
|
else: |
|
st.write(bot_template.replace( |
|
"{{MSG}}", message.content), unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
def add_logo(logo_path, width, height): |
|
"""Read and return a resized logo""" |
|
logo = Image.open(logo_path) |
|
modified_logo = logo.resize((width, height)) |
|
return modified_logo |
|
|
|
st.markdown(f'<style>{css}</style>', unsafe_allow_html=True) |
|
col1, col2,col3,col4,col5,col6 = st.columns(6) |
|
|
|
with col5: |
|
my_logo = add_logo(logo_path="CampusX.jfif", width=100, height=20) |
|
st.image(my_logo) |
|
with col6: |
|
pg_logo=add_logo(logo_path="Q&A logo.jfif", width=60, height=40) |
|
st.image(pg_logo) |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
load_dotenv() |
|
css2 = ''' |
|
<style> |
|
[data-testid="stSidebar"]{ |
|
min-width: 300px; |
|
max-width: 300px; |
|
} |
|
</style> |
|
''' |
|
st.markdown(css2, unsafe_allow_html=True) |
|
|
|
st.write(css, unsafe_allow_html=True) |
|
|
|
if "conversation" not in st.session_state: |
|
st.session_state.conversation = None |
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = None |
|
|
|
st.header(":blue Generate Insights :bar_chart:") |
|
user_question = st.text_input("Ask a question about your documents:") |
|
if user_question: |
|
handle_userinput(user_question) |
|
|
|
with st.sidebar: |
|
st.subheader("Your documents") |
|
uploaded_files = st.file_uploader("Upload documents", type=["pdf", "xlsx",'csv'], accept_multiple_files=True) |
|
|
|
|
|
if st.button("Process"): |
|
with st.spinner("Processing"): |
|
|
|
|
|
if uploaded_files is not None : |
|
raw_text = get_pdf_text(uploaded_files=uploaded_files) |
|
|
|
|
|
text_chunks = get_text_chunks(results=raw_text,chunk_size=chunk_size,chunk_overlap=chunk_overlap) |
|
|
|
|
|
vectorstore = get_vectorstore(results=text_chunks,embeddings_model_name=embeddings_model_name,persist_directory=persist_directory,client_settings=CHROMA_SETTINGS,chunk_size=chunk_size,chunk_overlap=chunk_overlap) |
|
|
|
|
|
st.session_state.conversation = get_conversation_chain(vectorstore=vectorstore,target_source_chunks=target_source_chunks,model_type=model_type) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|