Upload 5 files
Browse files- .pre-commit-config.yaml +44 -0
- CampusX.jfif +0 -0
- Q&A logo.jfif +0 -0
- htmltemplate.py +0 -0
- ingest.py +186 -0
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
files: ^(.*\.(py|json|md|sh|yaml|cfg|txt))$
|
3 |
+
exclude: ^(\.[^/]*cache/.*|.*/_user.py|source_documents/)$
|
4 |
+
repos:
|
5 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
6 |
+
rev: v4.4.0
|
7 |
+
hooks:
|
8 |
+
#- id: no-commit-to-branch
|
9 |
+
# args: [--branch, main]
|
10 |
+
- id: check-yaml
|
11 |
+
args: [--unsafe]
|
12 |
+
# - id: debug-statements
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: trailing-whitespace
|
15 |
+
exclude-files: \.md$
|
16 |
+
- id: check-json
|
17 |
+
- id: mixed-line-ending
|
18 |
+
# - id: check-builtin-literals
|
19 |
+
# - id: check-ast
|
20 |
+
- id: check-merge-conflict
|
21 |
+
- id: check-executables-have-shebangs
|
22 |
+
- id: check-shebang-scripts-are-executable
|
23 |
+
- id: check-docstring-first
|
24 |
+
- id: fix-byte-order-marker
|
25 |
+
- id: check-case-conflict
|
26 |
+
# - id: check-toml
|
27 |
+
- repo: https://github.com/adrienverge/yamllint.git
|
28 |
+
rev: v1.29.0
|
29 |
+
hooks:
|
30 |
+
- id: yamllint
|
31 |
+
args:
|
32 |
+
- --no-warnings
|
33 |
+
- -d
|
34 |
+
- '{extends: relaxed, rules: {line-length: {max: 90}}}'
|
35 |
+
- repo: https://github.com/codespell-project/codespell
|
36 |
+
rev: v2.2.2
|
37 |
+
hooks:
|
38 |
+
- id: codespell
|
39 |
+
args:
|
40 |
+
# - --builtin=clear,rare,informal,usage,code,names,en-GB_to_en-US
|
41 |
+
- --builtin=clear,rare,informal,usage,code,names
|
42 |
+
- --ignore-words-list=hass,master
|
43 |
+
- --skip="./.*"
|
44 |
+
- --quiet-level=2
|
CampusX.jfif
ADDED
Binary file (29.5 kB). View file
|
|
Q&A logo.jfif
ADDED
Binary file (2.92 kB). View file
|
|
htmltemplate.py
ADDED
File without changes
|
ingest.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
from typing import List
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from multiprocessing import Pool
|
7 |
+
from tqdm import tqdm
|
8 |
+
from langchain_cohere import CohereEmbeddings
|
9 |
+
from langchain.document_loaders import (
|
10 |
+
CSVLoader,
|
11 |
+
EverNoteLoader,
|
12 |
+
PyMuPDFLoader,
|
13 |
+
TextLoader,
|
14 |
+
UnstructuredEmailLoader,
|
15 |
+
UnstructuredEPubLoader,
|
16 |
+
UnstructuredHTMLLoader,
|
17 |
+
UnstructuredMarkdownLoader,
|
18 |
+
UnstructuredODTLoader,
|
19 |
+
UnstructuredPowerPointLoader,
|
20 |
+
UnstructuredWordDocumentLoader,
|
21 |
+
)
|
22 |
+
|
23 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
24 |
+
from langchain.vectorstores import Chroma
|
25 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
26 |
+
from langchain.docstore.document import Document
|
27 |
+
|
28 |
+
if not load_dotenv():
|
29 |
+
print("Could not load .env file or it is empty. Please check if it exists and is readable.")
|
30 |
+
exit(1)
|
31 |
+
|
32 |
+
from constants import CHROMA_SETTINGS
|
33 |
+
import chromadb
|
34 |
+
from chromadb.api.segment import API
|
35 |
+
|
36 |
+
# Load environment variables
|
37 |
+
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
38 |
+
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
39 |
+
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
|
40 |
+
chunk_size = 500
|
41 |
+
chunk_overlap = 50
|
42 |
+
|
43 |
+
|
44 |
+
# Custom document loaders
|
45 |
+
class MyElmLoader(UnstructuredEmailLoader):
|
46 |
+
"""Wrapper to fallback to text/plain when default does not work"""
|
47 |
+
|
48 |
+
def load(self) -> List[Document]:
|
49 |
+
"""Wrapper adding fallback for elm without html"""
|
50 |
+
try:
|
51 |
+
try:
|
52 |
+
doc = UnstructuredEmailLoader.load(self)
|
53 |
+
except ValueError as e:
|
54 |
+
if 'text/html content not found in email' in str(e):
|
55 |
+
# Try plain text
|
56 |
+
self.unstructured_kwargs["content_source"]="text/plain"
|
57 |
+
doc = UnstructuredEmailLoader.load(self)
|
58 |
+
else:
|
59 |
+
raise
|
60 |
+
except Exception as e:
|
61 |
+
# Add file_path to exception message
|
62 |
+
raise type(e)(f"{self.file_path}: {e}") from e
|
63 |
+
|
64 |
+
return doc
|
65 |
+
|
66 |
+
|
67 |
+
# Map file extensions to document loaders and their arguments
|
68 |
+
LOADER_MAPPING = {
|
69 |
+
".csv": (CSVLoader, {}),
|
70 |
+
# ".docx": (Docx2txtLoader, {}),
|
71 |
+
".doc": (UnstructuredWordDocumentLoader, {}),
|
72 |
+
".docx": (UnstructuredWordDocumentLoader, {}),
|
73 |
+
".enex": (EverNoteLoader, {}),
|
74 |
+
".eml": (MyElmLoader, {}),
|
75 |
+
".epub": (UnstructuredEPubLoader, {}),
|
76 |
+
".html": (UnstructuredHTMLLoader, {}),
|
77 |
+
".md": (UnstructuredMarkdownLoader, {}),
|
78 |
+
".odt": (UnstructuredODTLoader, {}),
|
79 |
+
".pdf": (PyMuPDFLoader, {}),
|
80 |
+
".ppt": (UnstructuredPowerPointLoader, {}),
|
81 |
+
".pptx": (UnstructuredPowerPointLoader, {}),
|
82 |
+
".txt": (TextLoader, {"encoding": "utf8"}),
|
83 |
+
# Add more mappings for other file extensions and loaders as needed
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
def load_single_document(file_path: str) -> List[Document]:
|
88 |
+
ext = "." + file_path.rsplit(".", 1)[-1].lower()
|
89 |
+
if ext in LOADER_MAPPING:
|
90 |
+
loader_class, loader_args = LOADER_MAPPING[ext]
|
91 |
+
loader = loader_class(file_path, **loader_args)
|
92 |
+
return loader.load()
|
93 |
+
|
94 |
+
raise ValueError(f"Unsupported file extension '{ext}'")
|
95 |
+
|
96 |
+
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
|
97 |
+
"""
|
98 |
+
Loads all documents from the source documents directory, ignoring specified files
|
99 |
+
"""
|
100 |
+
all_files = []
|
101 |
+
for ext in LOADER_MAPPING:
|
102 |
+
all_files.extend(
|
103 |
+
glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True)
|
104 |
+
)
|
105 |
+
all_files.extend(
|
106 |
+
glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True)
|
107 |
+
)
|
108 |
+
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
|
109 |
+
|
110 |
+
with Pool(processes=os.cpu_count()) as pool:
|
111 |
+
results = []
|
112 |
+
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
|
113 |
+
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
|
114 |
+
results.extend(docs)
|
115 |
+
pbar.update()
|
116 |
+
|
117 |
+
return results
|
118 |
+
|
119 |
+
def process_documents(ignored_files: List[str] = []) -> List[Document]:
|
120 |
+
"""
|
121 |
+
Load documents and split in chunks
|
122 |
+
"""
|
123 |
+
print(f"Loading documents from {source_directory}")
|
124 |
+
documents = load_documents(source_directory, ignored_files)
|
125 |
+
if not documents:
|
126 |
+
print("No new documents to load")
|
127 |
+
exit(0)
|
128 |
+
print(f"Loaded {len(documents)} new documents from {source_directory}")
|
129 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
130 |
+
documents = text_splitter.split_documents(documents)
|
131 |
+
print(f"Split into {len(documents)} chunks of text (max. {chunk_size} tokens each)")
|
132 |
+
return documents
|
133 |
+
|
134 |
+
def batch_chromadb_insertions(chroma_client: API, documents: List[Document]) -> List[Document]:
|
135 |
+
"""
|
136 |
+
Split the total documents to be inserted into batches of documents that the local chroma client can process
|
137 |
+
"""
|
138 |
+
# Get max batch size.
|
139 |
+
max_batch_size = chroma_client.max_batch_size
|
140 |
+
for i in range(0, len(documents), max_batch_size):
|
141 |
+
yield documents[i:i + max_batch_size]
|
142 |
+
|
143 |
+
|
144 |
+
def does_vectorstore_exist(persist_directory: str, embeddings: HuggingFaceEmbeddings) -> bool:
|
145 |
+
"""
|
146 |
+
Checks if vectorstore exists
|
147 |
+
"""
|
148 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
149 |
+
if not db.get()['documents']:
|
150 |
+
return False
|
151 |
+
return True
|
152 |
+
|
153 |
+
def main():
|
154 |
+
# Create embeddings
|
155 |
+
#embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
156 |
+
embeddings = CohereEmbeddings()
|
157 |
+
# Chroma client
|
158 |
+
chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory)
|
159 |
+
|
160 |
+
if does_vectorstore_exist(persist_directory, embeddings):
|
161 |
+
# Update and store locally vectorstore
|
162 |
+
print(f"Appending to existing vectorstore at {persist_directory}")
|
163 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client)
|
164 |
+
collection = db.get()
|
165 |
+
documents = process_documents([metadata['source'] for metadata in collection['metadatas']])
|
166 |
+
print(f"Creating embeddings. May take some minutes...")
|
167 |
+
for batched_chromadb_insertion in batch_chromadb_insertions(chroma_client, documents):
|
168 |
+
db.add_documents(batched_chromadb_insertion)
|
169 |
+
else:
|
170 |
+
# Create and store locally vectorstore
|
171 |
+
print("Creating new vectorstore")
|
172 |
+
documents = process_documents()
|
173 |
+
print(f"Creating embeddings. May take some minutes...")
|
174 |
+
# Create the db with the first batch of documents to insert
|
175 |
+
batched_chromadb_insertions = batch_chromadb_insertions(chroma_client, documents)
|
176 |
+
first_insertion = next(batched_chromadb_insertions)
|
177 |
+
db = Chroma.from_documents(first_insertion, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS, client=chroma_client)
|
178 |
+
# Add the rest of batches of documents
|
179 |
+
for batched_chromadb_insertion in batched_chromadb_insertions:
|
180 |
+
db.add_documents(batched_chromadb_insertion)
|
181 |
+
|
182 |
+
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
main()
|