#!/usr/bin/env python3 import os import glob from typing import List from dotenv import load_dotenv from multiprocessing import Pool from tqdm import tqdm from langchain_cohere import CohereEmbeddings from langchain.document_loaders import ( CSVLoader, EverNoteLoader, PyMuPDFLoader, TextLoader, UnstructuredEmailLoader, UnstructuredEPubLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, UnstructuredWordDocumentLoader, ) from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.docstore.document import Document if not load_dotenv(): print("Could not load .env file or it is empty. Please check if it exists and is readable.") exit(1) from constants import CHROMA_SETTINGS import chromadb from chromadb.api.segment import API # Load environment variables persist_directory = os.environ.get('PERSIST_DIRECTORY') source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents') embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME') chunk_size = 500 chunk_overlap = 50 # Custom document loaders class MyElmLoader(UnstructuredEmailLoader): """Wrapper to fallback to text/plain when default does not work""" def load(self) -> List[Document]: """Wrapper adding fallback for elm without html""" try: try: doc = UnstructuredEmailLoader.load(self) except ValueError as e: if 'text/html content not found in email' in str(e): # Try plain text self.unstructured_kwargs["content_source"]="text/plain" doc = UnstructuredEmailLoader.load(self) else: raise except Exception as e: # Add file_path to exception message raise type(e)(f"{self.file_path}: {e}") from e return doc # Map file extensions to document loaders and their arguments LOADER_MAPPING = { ".csv": (CSVLoader, {}), # ".docx": (Docx2txtLoader, {}), ".doc": (UnstructuredWordDocumentLoader, {}), ".docx": (UnstructuredWordDocumentLoader, {}), ".enex": (EverNoteLoader, {}), ".eml": (MyElmLoader, {}), ".epub": (UnstructuredEPubLoader, {}), ".html": (UnstructuredHTMLLoader, {}), ".md": (UnstructuredMarkdownLoader, {}), ".odt": (UnstructuredODTLoader, {}), ".pdf": (PyMuPDFLoader, {}), ".ppt": (UnstructuredPowerPointLoader, {}), ".pptx": (UnstructuredPowerPointLoader, {}), ".txt": (TextLoader, {"encoding": "utf8"}), # Add more mappings for other file extensions and loaders as needed } def load_single_document(file_path: str) -> List[Document]: ext = "." + file_path.rsplit(".", 1)[-1].lower() if ext in LOADER_MAPPING: loader_class, loader_args = LOADER_MAPPING[ext] loader = loader_class(file_path, **loader_args) return loader.load() raise ValueError(f"Unsupported file extension '{ext}'") def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]: """ Loads all documents from the source documents directory, ignoring specified files """ all_files = [] for ext in LOADER_MAPPING: all_files.extend( glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True) ) all_files.extend( glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True) ) filtered_files = [file_path for file_path in all_files if file_path not in ignored_files] with Pool(processes=os.cpu_count()) as pool: results = [] with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar: for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)): results.extend(docs) pbar.update() return results def process_documents(ignored_files: List[str] = []) -> List[Document]: """ Load documents and split in chunks """ print(f"Loading documents from {source_directory}") documents = load_documents(source_directory, ignored_files) if not documents: print("No new documents to load") exit(0) print(f"Loaded {len(documents)} new documents from {source_directory}") text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) documents = text_splitter.split_documents(documents) print(f"Split into {len(documents)} chunks of text (max. {chunk_size} tokens each)") return documents def batch_chromadb_insertions(chroma_client: API, documents: List[Document]) -> List[Document]: """ Split the total documents to be inserted into batches of documents that the local chroma client can process """ # Get max batch size. max_batch_size = chroma_client.max_batch_size for i in range(0, len(documents), max_batch_size): yield documents[i:i + max_batch_size] def does_vectorstore_exist(persist_directory: str, embeddings: HuggingFaceEmbeddings) -> bool: """ Checks if vectorstore exists """ db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) if not db.get()['documents']: return False return True def main(): # Create embeddings #embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) embeddings = CohereEmbeddings() # Chroma client chroma_client = chromadb.PersistentClient(settings=CHROMA_SETTINGS , path=persist_directory) if does_vectorstore_exist(persist_directory, embeddings): # Update and store locally vectorstore print(f"Appending to existing vectorstore at {persist_directory}") db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, client=chroma_client) collection = db.get() documents = process_documents([metadata['source'] for metadata in collection['metadatas']]) print(f"Creating embeddings. May take some minutes...") for batched_chromadb_insertion in batch_chromadb_insertions(chroma_client, documents): db.add_documents(batched_chromadb_insertion) else: # Create and store locally vectorstore print("Creating new vectorstore") documents = process_documents() print(f"Creating embeddings. May take some minutes...") # Create the db with the first batch of documents to insert batched_chromadb_insertions = batch_chromadb_insertions(chroma_client, documents) first_insertion = next(batched_chromadb_insertions) db = Chroma.from_documents(first_insertion, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS, client=chroma_client) # Add the rest of batches of documents for batched_chromadb_insertion in batched_chromadb_insertions: db.add_documents(batched_chromadb_insertion) print(f"Ingestion complete! You can now run privateGPT.py to query your documents") if __name__ == "__main__": main()