Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,12 @@
|
|
1 |
-
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
3 |
-
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
4 |
|
5 |
model_name = "Nucha/Nucha_ITSkillNER_BERT"
|
6 |
-
|
7 |
-
# โหลด tokenizer
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
9 |
|
10 |
-
# โหลด model แบบ meta และโหลด weights อย่างถูกต้อง
|
11 |
-
with init_empty_weights():
|
12 |
-
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
13 |
-
|
14 |
-
model = load_checkpoint_and_dispatch(
|
15 |
-
model,
|
16 |
-
model_name,
|
17 |
-
device_map="auto"
|
18 |
-
)
|
19 |
-
|
20 |
-
# สร้าง NER pipeline
|
21 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
22 |
|
|
|
23 |
# Mapping สีของ Entity
|
24 |
ENTITY_COLORS = {
|
25 |
"HSKILL": "#FFD700", # ทักษะเชิงเทคนิค
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
2 |
|
3 |
model_name = "Nucha/Nucha_ITSkillNER_BERT"
|
|
|
|
|
4 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
5 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
8 |
|
9 |
+
|
10 |
# Mapping สีของ Entity
|
11 |
ENTITY_COLORS = {
|
12 |
"HSKILL": "#FFD700", # ทักษะเชิงเทคนิค
|