Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,40 @@
|
|
1 |
import os
|
2 |
os.system("python -m spacy download en_core_web_sm")
|
3 |
|
4 |
-
|
5 |
import streamlit as st
|
6 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
model_name = "Nucha/
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
12 |
|
13 |
-
# สร้าง NER
|
14 |
-
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
15 |
|
16 |
# UI ด้วย Streamlit
|
17 |
-
st.title("NER Analysis
|
|
|
18 |
text = st.text_area("Enter text for NER analysis:")
|
19 |
|
20 |
if st.button("Analyze"):
|
21 |
ner_results = ner_pipeline(text)
|
|
|
|
|
|
|
22 |
for entity in ner_results:
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
os.system("python -m spacy download en_core_web_sm")
|
3 |
|
|
|
4 |
import streamlit as st
|
5 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
6 |
+
import spacy
|
7 |
+
from spacy import displacy
|
8 |
+
|
9 |
+
# โหลด Spacy Model
|
10 |
+
nlp = spacy.load("en_core_web_sm")
|
11 |
|
12 |
+
# โหลดโมเดล NER จาก Hugging Face
|
13 |
+
model_name = "Nucha/Nucha_SkillNER_BERT"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
16 |
|
17 |
+
# สร้าง pipeline สำหรับ NER
|
18 |
+
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
19 |
|
20 |
# UI ด้วย Streamlit
|
21 |
+
st.title("NER Analysis with Nucha SkillNER BERT and displacy")
|
22 |
+
|
23 |
text = st.text_area("Enter text for NER analysis:")
|
24 |
|
25 |
if st.button("Analyze"):
|
26 |
ner_results = ner_pipeline(text)
|
27 |
+
|
28 |
+
# เตรียมข้อมูลสำหรับ displacy
|
29 |
+
ents = []
|
30 |
for entity in ner_results:
|
31 |
+
ents.append({
|
32 |
+
"start": entity['start'],
|
33 |
+
"end": entity['end'],
|
34 |
+
"label": entity['entity'],
|
35 |
+
})
|
36 |
+
|
37 |
+
# แสดงผล displacy ผ่าน Streamlit
|
38 |
+
options = {"colors": {"SKILL": "lightblue"}} # เพิ่มสีให้แต่ละ label ถ้าต้องการ
|
39 |
+
html = displacy.render({"text": text, "ents": ents}, style="ent", manual=True, options=options)
|
40 |
+
st.write(html, unsafe_allow_html=True)
|