Nucha commited on
Commit
7abeff1
·
verified ·
1 Parent(s): f42b098

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -8
app.py CHANGED
@@ -1,24 +1,40 @@
1
  import os
2
  os.system("python -m spacy download en_core_web_sm")
3
 
4
-
5
  import streamlit as st
6
  from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
 
 
 
 
 
7
 
8
- # โหลด Tokenizer และ Model
9
- model_name = "Nucha/NuchaBertBaseUncased"
10
  tokenizer = AutoTokenizer.from_pretrained(model_name)
11
  model = AutoModelForTokenClassification.from_pretrained(model_name)
12
 
13
- # สร้าง NER Pipeline
14
- ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
15
 
16
  # UI ด้วย Streamlit
17
- st.title("NER Analysis App")
 
18
  text = st.text_area("Enter text for NER analysis:")
19
 
20
  if st.button("Analyze"):
21
  ner_results = ner_pipeline(text)
 
 
 
22
  for entity in ner_results:
23
- if entity['entity']!="LABEL_0":
24
- st.write(f"Entity: {entity['word']}, Label: {entity['entity']}, Score: {entity['score']:.4f}")
 
 
 
 
 
 
 
 
 
1
  import os
2
  os.system("python -m spacy download en_core_web_sm")
3
 
 
4
  import streamlit as st
5
  from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
6
+ import spacy
7
+ from spacy import displacy
8
+
9
+ # โหลด Spacy Model
10
+ nlp = spacy.load("en_core_web_sm")
11
 
12
+ # โหลดโมเดล NER จาก Hugging Face
13
+ model_name = "Nucha/Nucha_SkillNER_BERT"
14
  tokenizer = AutoTokenizer.from_pretrained(model_name)
15
  model = AutoModelForTokenClassification.from_pretrained(model_name)
16
 
17
+ # สร้าง pipeline สำหรับ NER
18
+ ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
19
 
20
  # UI ด้วย Streamlit
21
+ st.title("NER Analysis with Nucha SkillNER BERT and displacy")
22
+
23
  text = st.text_area("Enter text for NER analysis:")
24
 
25
  if st.button("Analyze"):
26
  ner_results = ner_pipeline(text)
27
+
28
+ # เตรียมข้อมูลสำหรับ displacy
29
+ ents = []
30
  for entity in ner_results:
31
+ ents.append({
32
+ "start": entity['start'],
33
+ "end": entity['end'],
34
+ "label": entity['entity'],
35
+ })
36
+
37
+ # แสดงผล displacy ผ่าน Streamlit
38
+ options = {"colors": {"SKILL": "lightblue"}} # เพิ่มสีให้แต่ละ label ถ้าต้องการ
39
+ html = displacy.render({"text": text, "ents": ents}, style="ent", manual=True, options=options)
40
+ st.write(html, unsafe_allow_html=True)