Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
3 |
-
from sparknlp_display import Display
|
4 |
-
from pyspark.sql import SparkSession
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
.appName("NER Analysis") \
|
9 |
-
.getOrCreate()
|
10 |
-
|
11 |
-
# โหลดโมเดล NER จาก Hugging Face
|
12 |
-
model_name = "Nucha/Nucha_SkillNER_BERT"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
15 |
|
16 |
-
# สร้าง
|
17 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
18 |
|
19 |
# UI ด้วย Streamlit
|
20 |
-
st.title("NER Analysis
|
21 |
-
|
22 |
text = st.text_area("Enter text for NER analysis:")
|
23 |
|
24 |
if st.button("Analyze"):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# สร้าง DataFrame สำหรับผลลัพธ์
|
29 |
-
data = [{"word": entity['word'], "start": entity['start'], "end": entity['end'], "label": entity['entity']} for entity in ner_results]
|
30 |
-
ner_df = spark.createDataFrame(data)
|
31 |
-
|
32 |
-
# แสดงผลด้วย sparknlp_display
|
33 |
-
display = Display()
|
34 |
-
st.write(display.display(ner_df, "word", "label"))
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
|
|
3 |
|
4 |
+
# โหลด Tokenizer และ Model
|
5 |
+
model_name = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
|
|
|
|
|
|
|
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
8 |
|
9 |
+
# สร้าง NER Pipeline
|
10 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
# UI ด้วย Streamlit
|
13 |
+
st.title("NER Analysis App")
|
|
|
14 |
text = st.text_area("Enter text for NER analysis:")
|
15 |
|
16 |
if st.button("Analyze"):
|
17 |
+
ner_results = ner_pipeline(text)
|
18 |
+
for entity in ner_results:
|
19 |
+
st.write(f"Entity: {entity['word']}, Label: {entity['entity']}, Score: {entity['score']:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|