Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
3 |
|
4 |
# โหลด Tokenizer และ Model
|
@@ -9,11 +9,11 @@ model = AutoModelForTokenClassification.from_pretrained(model_name)
|
|
9 |
# สร้าง NER Pipeline
|
10 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
return [(entity['word'], entity['entity'], entity['score']) for entity in ner_results]
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
3 |
|
4 |
# โหลด Tokenizer และ Model
|
|
|
9 |
# สร้าง NER Pipeline
|
10 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
+
# UI ด้วย Streamlit
|
13 |
+
st.title("NER Analysis App")
|
14 |
+
text = st.text_area("Enter text for NER analysis:")
|
|
|
15 |
|
16 |
+
if st.button("Analyze"):
|
17 |
+
ner_results = ner_pipeline(text)
|
18 |
+
for entity in ner_results:
|
19 |
+
st.write(f"Entity: {entity['word']}, Label: {entity['entity']}, Score: {entity['score']:.4f}")
|