Spaces:
Sleeping
Sleeping
File size: 6,162 Bytes
080146c 47e4aa2 754b268 080146c 47e4aa2 080146c facd13e 080146c 3c5ed5b 2a36d42 47e4aa2 080146c 767bdf9 080146c 767bdf9 080146c 403260d facd13e 080146c facd13e 754b268 080146c 754b268 03e1062 754b268 2a36d42 080146c 47e4aa2 080146c 47e4aa2 080146c 47e4aa2 080146c 47e4aa2 080146c 754b268 080146c 24083bf 080146c 403260d 080146c 403260d 767bdf9 080146c 767bdf9 080146c 47e4aa2 080146c 47e4aa2 080146c 47e4aa2 754b268 47e4aa2 080146c 47e4aa2 080146c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# llm_handling.py
import logging
import os
from langchain_community.vectorstores import FAISS
import requests
from tenacity import retry, stop_after_attempt, wait_exponential
import json
from app.config import BASE_DB_PATH # Ensure correct import
from app.config import LLM_CONFIGS, LLMType # Import LLMType and LLM_CONFIGS
from app.configs.prompts import SYSTEM_PROMPTS
from app.utils.embedding_utils import get_embeddings
logging.basicConfig(level=logging.INFO)
# =====================================
# Functions related to LLM
# =====================================
def get_llm_client(llm_type: LLMType):
"""Obtains the appropriate client for the selected model"""
config = LLM_CONFIGS.get(llm_type)
if not config:
raise ValueError(f"Model {llm_type} not supported")
client_class = config["client"]
model = config["model"]
client = client_class() # Ensure no arguments are needed
return client, model
def get_system_prompt(prompt_type="tutor"):
"""Selects the appropriate system prompt"""
return SYSTEM_PROMPTS.get(prompt_type, SYSTEM_PROMPTS["tutor"])
def test_local_connection():
"""Checks connection to the local LLM server"""
try:
response = requests.get(f"http://192.168.43.199:1234/v1/health", timeout=5)
return response.status_code == 200
except:
return False
def read_metadata(db_path):
metadata_file = os.path.join(db_path, "metadata.json")
if os.path.exists(metadata_file):
with open(metadata_file, 'r') as f:
return json.load(f)
return []
def get_relevant_documents(vectorstore, question, min_similarity=0.7):
"""Retrieves relevant documents from the vectorstore"""
try:
enhanced_query = enhance_query(question)
docs_and_scores = vectorstore.similarity_search_with_score(
enhanced_query,
k=8
)
filtered_docs = [
doc for doc, score in docs_and_scores if score >= min_similarity
]
logging.info(f"Query: {question}")
logging.info(f"Documents found: {len(filtered_docs)}")
return filtered_docs[:5] if filtered_docs else []
except Exception as e:
logging.error(f"Error retrieving documents: {e}")
return []
def enhance_query(question):
stop_words = set(['il', 'lo', 'la', 'i', 'gli', 'le', 'un', 'uno', 'una'])
words = [w for w in question.lower().split() if w not in stop_words]
enhanced_query = " ".join(words)
return enhanced_query
def log_search_results(question, docs_and_scores):
logging.info(f"Query: {question}")
for idx, (doc, score) in enumerate(docs_and_scores, 1):
logging.info(f"Doc {idx} - Score: {score:.4f}")
logging.info(f"Content: {doc.page_content[:100]}...")
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def answer_question(question, db_name, prompt_type="tutor", chat_history=None, llm_type=None):
if chat_history is None:
chat_history = []
try:
embeddings = get_embeddings()
db_path = os.path.join(BASE_DB_PATH, f"faiss_index_{db_name}")
metadata_list = read_metadata(db_path)
metadata_dict = {m["filename"]: m for m in metadata_list}
vectorstore = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
relevant_docs = get_relevant_documents(vectorstore, question)
if not relevant_docs:
return [
{"role": "user", "content": question},
{"role": "assistant", "content": "Sorry, no relevant information found to answer your question. Try rephrasing or asking a different question."}
]
sources = []
for idx, doc in enumerate(relevant_docs, 1):
source_file = doc.metadata.get("source", "Unknown")
if source_file in metadata_dict:
meta = metadata_dict[source_file]
sources.append(f"📚 {meta['title']} (Author: {meta['author']}) - Part {idx} of {len(relevant_docs)}")
context = "\n".join([
f"[Part {idx+1} of {len(relevant_docs)}]\n{doc.page_content}"
for idx, doc in enumerate(relevant_docs)
])
sources_text = "\n\nSources consulted:\n" + "\n".join(set(sources))
prompt = SYSTEM_PROMPTS[prompt_type].format(context=context)
prompt += "\nAlways cite the sources used for your response, including the document title and author."
messages = [
{"role": "system", "content": prompt},
*[{"role": m["role"], "content": m["content"]} for m in chat_history],
{"role": "user", "content": question}
]
client, model = get_llm_client(llm_type)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.7,
max_tokens=2048
)
answer = response.choices[0].message.content + sources_text
return [
{"role": "user", "content": question},
{"role": "assistant", "content": answer}
]
except Exception as e:
logging.error(f"Error generating response: {e}")
error_msg = "Local LLM not available. Try again later or use OpenAI." if "local" in str(llm_type) else str(e)
return [
{"role": "user", "content": question},
{"role": "assistant", "content": f"⚠️ {error_msg}"}
]
class DocumentRetriever:
def __init__(self, db_path):
self.embeddings = get_embeddings()
self.vectorstore = FAISS.load_local(
db_path,
self.embeddings,
allow_dangerous_deserialization=True
)
def get_relevant_chunks(self, question):
enhanced_query = enhance_query(question)
docs_and_scores = self.vectorstore.similarity_search_with_score(
enhanced_query,
k=8
)
log_search_results(question, docs_and_scores)
# Implement _filter_relevant_docs or remove the call
# return self._filter_relevant_docs(docs_and_scores)
if __name__ == "__main__":
pass |