Spaces:
Sleeping
Sleeping
File size: 6,837 Bytes
47e4aa2 ac52d7a 47e4aa2 ac52d7a 080146c 47e4aa2 ac52d7a 47e4aa2 ac52d7a 47e4aa2 080146c ac52d7a 080146c ac52d7a 47e4aa2 080146c 47e4aa2 b2638ec 47e4aa2 080146c 47e4aa2 a45dfb0 47e4aa2 080146c 47e4aa2 b2638ec 47e4aa2 b2638ec 47e4aa2 b2638ec 47e4aa2 a45dfb0 47e4aa2 b2638ec 47e4aa2 b2638ec a45dfb0 47e4aa2 b2638ec 47e4aa2 b2638ec 47e4aa2 b2638ec 47e4aa2 b2638ec 47e4aa2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import logging
import gradio as gr
from langchain_community.vectorstores import FAISS
import os
import PyPDF2
from docx import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import json
from datetime import datetime
from app.functions.database_handling import BASE_DB_PATH
from langchain_community.embeddings import HuggingFaceEmbeddings
from app.config import EMBEDDING_CONFIG, EMBEDDING_MODEL
from app.utils.embedding_utils import get_embeddings
from app.utils.dataclass_utils import DocumentMetadata, save_metadata
# -------------- UTILITY FUNCTIONS --------------
def extract_text_from_pdf(file_path):
"""
Estrae il testo da un file PDF.
Args:
file_path: Percorso del file PDF
Returns:
str: Testo estratto dal PDF
"""
with open(file_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def extract_text_from_docx(file_path):
"""
Estrae il testo da un file DOCX.
Args:
file_path: Percorso del file DOCX
Returns:
str: Testo estratto dal documento Word
"""
doc = Document(file_path)
text = ""
for para in doc.paragraphs:
text += para.text + "\n"
return text
def create_chunks(text):
from app.config import EMBEDDING_CONFIG
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=EMBEDDING_CONFIG["chunk_size"],
chunk_overlap=EMBEDDING_CONFIG["chunk_overlap"],
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
return text_splitter.split_text(text)
def create_vectorstore(texts, metadatas, db_path):
embeddings = get_embeddings()
db = FAISS.from_texts(texts, embeddings, metadatas=metadatas)
# -------------- DOCUMENT MANAGEMENT TAB FUNCTIONS --------------
def upload_and_index(files, title, author, db_name="default_db"):
if not files:
return "Nessun file caricato."
documents = []
doc_metadata = []
for file in files:
try:
if file.name.endswith('.pdf'):
text = extract_text_from_pdf(file.name)
elif file.name.endswith('.docx'):
text = extract_text_from_docx(file.name)
else:
# File .txt o altro testo semplice
with open(file.name, 'r', encoding='utf-8') as f:
text = f.read()
chunks = create_chunks(text)
# Metadata per il documento
doc_meta = DocumentMetadata(
filename=os.path.basename(file.name),
title=title,
author=author,
upload_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
chunks=len(chunks)
)
# Metadata per ogni chunk
for i, chunk in enumerate(chunks):
chunk_metadata = {
"content": chunk,
"source": os.path.basename(file.name),
"title": title,
"author": author,
"chunk_index": i,
"total_chunks": len(chunks),
"upload_date": doc_meta.upload_date
}
documents.append(chunk_metadata)
doc_metadata.append(doc_meta)
except Exception as e:
logging.error(f"Errore durante la lettura del file {file.name}: {e}")
continue
if documents:
try:
db_path = os.path.join(BASE_DB_PATH, f"faiss_index_{db_name}") # Modifica qui
os.makedirs(db_path, exist_ok=True)
# Usa la funzione centralizzata invece dell'inizializzazione diretta
embeddings = get_embeddings()
texts = [doc["content"] for doc in documents]
metadatas = [{k: v for k, v in doc.items() if k != "content"} for doc in documents]
# Crea o sovrascrivi l'indice FAISS con questi documenti
vectorstore = FAISS.from_texts(texts, embeddings, metadatas=metadatas)
vectorstore.save_local(db_path)
# Salva i metadati del documento su file
save_metadata(doc_metadata, db_name)
return f"Documenti indicizzati con successo nel database '{db_name}'!"
except Exception as e:
logging.error(f"Errore durante l'indicizzazione: {e}")
return f"Errore durante l'indicizzazione: {e}"
return "Nessun documento processato."
def list_indexed_files(db_name="default_db"):
db_path = os.path.join(BASE_DB_PATH, f"faiss_index_{db_name}") # Modifica qui
metadata_file = os.path.join(db_path, "metadata.json")
if not os.path.exists(metadata_file):
return "Nessun file nel database."
try:
with open(metadata_file, 'r') as f:
metadata = json.load(f)
if not metadata:
return "Nessun documento nel database."
output = []
for doc in metadata:
output.append(
f"📄 {doc['title']}\n"
f" Autore: {doc['author']}\n"
f" File: {doc['filename']}\n"
f" Chunks: {doc['chunks']}\n"
f" Caricato il: {doc['upload_date']}\n"
)
return "\n".join(output) if output else "Nessun documento nel database."
except Exception as e:
logging.error(f"Errore nella lettura dei metadati: {e}")
return f"Errore nella lettura dei metadati: {e}"
def delete_file_from_database(file_name, db_name="default_db"):
"""
Esempio semplificato: potresti voler rimuovere i chunk
da FAISS. Attualmente, la funzione gestisce un 'file_list.txt',
ma devi adattarla alle tue esigenze di rimozione dei chunk.
"""
db_path = os.path.join(BASE_DB_PATH, f"faiss_index_{db_name}") # Modifica qui
file_list_path = os.path.join(db_path, "file_list.txt")
if not os.path.exists(file_list_path):
return "Database non trovato (file_list.txt mancante)."
try:
# Leggi la lista dei file
with open(file_list_path, "r") as f:
files = f.readlines()
# Rimuovi il file dalla lista
files = [line.strip() for line in files if line.strip() != file_name]
# Riscrivi la lista aggiornata
with open(file_list_path, "w") as f:
for fl in files:
f.write(f"{fl}\n")
return f"File '{file_name}' rimosso dal database '{db_name}'."
except Exception as e:
return f"Errore durante la rimozione del file: {e}"
|