Spaces:
Sleeping
Sleeping
File size: 7,474 Bytes
47e4aa2 24083bf 47e4aa2 403260d 47e4aa2 a45dfb0 facd13e 47e4aa2 24083bf 403260d facd13e 24083bf 47e4aa2 a45dfb0 47e4aa2 a45dfb0 47e4aa2 a45dfb0 47e4aa2 a45dfb0 47e4aa2 24083bf 47e4aa2 403260d 24083bf 403260d 24083bf 403260d 24083bf 403260d 47e4aa2 403260d 47e4aa2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import logging
import os
import shutil
from enum import Enum
from openai import OpenAI
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import gradio as gr
import asyncio
import edge_tts
from pathlib import Path
from app.config import OPENAI_API_KEY
from app.functions.database_handling import BASE_DB_PATH # Aggiungi questo import
from app.configs.prompts import SYSTEM_PROMPTS
logging.basicConfig(level=logging.INFO)
class LLMType(Enum):
OPENAI = "openai"
LOCAL = "local"
# Client OpenAI standard
openai_client = OpenAI(api_key=OPENAI_API_KEY)
# Client LM Studio locale
local_client = OpenAI(
base_url="http://192.168.140.5:1234/v1",
api_key="not-needed"
)
# Voci italiane edge-tts
VOICE_USER = "it-IT-DiegoNeural" # Voce maschile utente
VOICE_ASSISTANT = "it-IT-ElsaNeural" # Voce femminile assistente
async def text_to_speech(text, voice_name, output_file):
"""Genera audio usando edge-tts"""
communicate = edge_tts.Communicate(text, voice_name)
await communicate.save(output_file)
def generate_speech(text, is_user=True):
try:
# Crea directory per audio temporanei
audio_dir = Path("temp_audio")
audio_dir.mkdir(exist_ok=True)
# Seleziona voce e genera nome file
voice = VOICE_USER if is_user else VOICE_ASSISTANT
file_name = f"speech_{hash(text)}.mp3"
output_path = audio_dir / file_name
# Genera audio
asyncio.run(text_to_speech(text, voice, str(output_path)))
return str(output_path)
except Exception as e:
logging.error(f"Errore TTS: {e}")
return None
import re
def clean_markdown(text):
"""Rimuove markdown dal testo"""
text = re.sub(r'```[\s\S]*?```', '', text) # blocchi codice
text = re.sub(r'`.*?`', '', text) # codice inline
text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text) # link
text = re.sub(r'\*\*(.*?)\*\*', r'\1', text) # bold
text = re.sub(r'\*(.*?)\*', r'\1', text) # italic
return text.strip()
def generate_chat_audio(chat_history):
"""Genera audio della conversazione con voci alternate"""
try:
audio_files = []
audio_dir = Path("temp_audio")
audio_dir.mkdir(exist_ok=True)
# Genera audio per ogni messaggio
for msg in chat_history:
content = clean_markdown(msg["content"])
if not content.strip():
continue
voice = VOICE_USER if msg["role"] == "user" else VOICE_ASSISTANT
file_name = f"chat_{msg['role']}_{hash(content)}.mp3"
output_path = audio_dir / file_name
# Genera audio senza prefissi
asyncio.run(text_to_speech(content, voice, str(output_path)))
audio_files.append(str(output_path))
# Combina tutti gli audio
if audio_files:
from pydub import AudioSegment
combined = AudioSegment.empty()
for audio_file in audio_files:
segment = AudioSegment.from_mp3(audio_file)
combined += segment
final_path = audio_dir / f"chat_complete_{hash(str(chat_history))}.mp3"
combined.export(str(final_path), format="mp3")
return str(final_path)
return None
except Exception as e:
logging.error(f"Errore generazione audio: {e}")
return None
def get_system_prompt(prompt_type="tutor"):
"""Seleziona il prompt di sistema appropriato"""
return SYSTEM_PROMPTS.get(prompt_type, SYSTEM_PROMPTS["tutor"])
def answer_question(question, db_name, prompt_type="tutor", chat_history=None, llm_type=LLMType.OPENAI):
"""
Risponde alla domanda 'question' usando i documenti del database 'db_name'.
Restituisce una lista di 2 messaggi in formato:
[
{"role": "user", "content": <domanda>},
{"role": "assistant", "content": <risposta>}
]
In questa versione, viene effettuato il log dei 'chunk' recuperati durante
la ricerca di similarità.
"""
if chat_history is None:
chat_history = []
logging.info(f"Inizio elaborazione domanda: {question} per database: {db_name}")
try:
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
db_path = os.path.join(BASE_DB_PATH, f"faiss_index_{db_name}") # Percorso corretto
logging.info(f"Verifico esistenza database in: {db_path}")
if not os.path.exists(db_path):
logging.warning(f"Database {db_name} non trovato in {db_path}")
return [
{"role": "user", "content": question},
{"role": "assistant", "content": f"Database non trovato in {db_path}"}
]
# Carica l'indice FAISS
vectorstore = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
# Cerca i documenti (chunk) più simili
relevant_docs = vectorstore.similarity_search(question, k=3)
# Logga i chunk recuperati
for idx, doc in enumerate(relevant_docs):
logging.info(f"--- Chunk {idx+1} ---")
logging.info(doc.page_content)
logging.info("---------------------")
# Prepara il contesto dai documenti
context = "\n".join([doc.page_content for doc in relevant_docs])
prompt = SYSTEM_PROMPTS[prompt_type].format(context=context)
# Prepara la cronologia completa delle conversazioni
conversation_history = []
for msg in chat_history: # Rimuovo limite di 4 messaggi
conversation_history.append({
"role": msg["role"],
"content": msg["content"]
})
# Costruisci messaggio con contesto completo
messages = [
{"role": "system", "content": prompt},
*conversation_history, # Includi tutta la cronologia
{"role": "user", "content": question}
]
if llm_type == LLMType.OPENAI:
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
temperature=0.7,
max_tokens=2048 # Aumenta token per gestire conversazioni lunghe
)
answer = response.choices[0].message.content
else: # LOCAL
response = local_client.chat.completions.create(
model="qwen2.5-coder-7b-instruct",
messages=messages,
temperature=0.7
)
answer = response.choices[0].message.content
# Genera audio per domanda e risposta
user_audio = generate_speech(question, is_user=True)
assistant_audio = generate_speech(answer, is_user=False)
return [
{"role": "user", "content": question, "audio": user_audio},
{"role": "assistant", "content": answer, "audio": assistant_audio}
]
except Exception as e:
logging.error(f"Errore durante la generazione della risposta: {e}")
return [
{"role": "user", "content": question},
{"role": "assistant", "content": f"Si è verificato un errore: {str(e)}"}
]
if __name__ == "__main__":
pass
|