File size: 11,423 Bytes
47e4aa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import logging
import gradio as gr  # Aggiunto import mancante
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
import os
import shutil
import PyPDF2
from docx import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from dataclasses import dataclass
import json
from datetime import datetime

# Initialize the text splitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)

# -------------- UTILITY FUNCTIONS --------------
@dataclass
class DocumentMetadata:
    filename: str
    title: str
    author: str
    upload_date: str
    chunks: int
    
    def to_dict(self):
        return {
            "filename": self.filename,
            "title": self.title,
            "author": self.author,
            "upload_date": self.upload_date,
            "chunks": self.chunks
        }

def save_metadata(metadata_list, db_name):
    db_path = f"faiss_index_{db_name}"
    metadata_file = os.path.join(db_path, "metadata.json")
    
    existing_metadata = []
    if os.path.exists(metadata_file):
        with open(metadata_file, 'r') as f:
            existing_metadata = json.load(f)
    
    existing_metadata.extend([m.to_dict() for m in metadata_list])
    
    with open(metadata_file, 'w') as f:
        json.dump(existing_metadata, f, indent=2)

def extract_text_from_pdf(file_path):
    with open(file_path, 'rb') as f:
        reader = PyPDF2.PdfReader(f)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text

def extract_text_from_docx(file_path):
    doc = Document(file_path)
    text = ""
    for para in doc.paragraphs:
        text += para.text + "\n"
    return text

# -------------- CHATBOT TAB FUNCTIONS --------------
def answer_question(question, db_name="default_db"):
    db_path = f"faiss_index_{db_name}"
    if not os.path.exists(db_path):
        logging.warning(f"L'indice FAISS per il database {db_name} non esiste.")
        return "Database non trovato."
    
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    vectorstore = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
    
    # Perform a similarity search
    docs = vectorstore.similarity_search(question)
    
    if not docs:
        return "Nessun documento corrispondente alla query."
    
    # Collect the document contents
    results = [doc.page_content for doc in docs]
    return "\n\n".join(results)

# -------------- DATABASE MANAGEMENT TAB FUNCTIONS --------------
def create_database(db_name):
    logging.info(f"Creating database: {db_name}")
    db_path = f"faiss_index_{db_name}"
    
    if os.path.exists(db_path):
        return f"Il database {db_name} esiste giΓ ."
    
    try:
        os.makedirs(db_path)
        logging.info(f"Database {db_name} created successfully.")
        databases = list_databases()
        return (f"Database {db_name} creato con successo.", databases)
    except Exception as e:
        logging.error(f"Errore nella creazione del database: {e}")
        return (f"Errore nella creazione del database: {e}", [])

def delete_database(db_name):
    db_path = f"faiss_index_{db_name}"
    if not os.path.exists(db_path):
        return f"Il database {db_name} non esiste."
    try:
        shutil.rmtree(db_path)
        logging.info(f"Database {db_name} eliminato con successo.")
        return f"Database {db_name} eliminato con successo."
    except OSError as e:
        logging.error(f"Impossibile eliminare il database {db_name}: {e}")
        return f"Impossibile eliminare il database {db_name}: {e}"

def modify_database(old_db_name, new_db_name):
    old_db_path = f"faiss_index_{old_db_name}"
    new_db_path = f"faiss_index_{new_db_name}"
    if not os.path.exists(old_db_path):
        return f"Il database {old_db_name} non esiste."
    if os.path.exists(new_db_path):
        return f"Il database {new_db_name} esiste giΓ ."
    try:
        os.rename(old_db_path, new_db_path)
        return f"Database {old_db_name} rinominato in {new_db_name} con successo."
    except Exception as e:
        return f"Errore durante la modifica del database: {e}"

def list_databases():
    try:
        databases = []
        for item in os.listdir():
            if os.path.isdir(item) and item.startswith("faiss_index_"):
                db_name = item.replace("faiss_index_", "")
                databases.append(db_name)
        # Ensure "default_db" is in the list
        if "default_db" not in databases:
            databases.append("default_db")
        return databases
    except Exception as e:
        logging.error(f"Error listing databases: {e}")
        return []

# -------------- DOCUMENT MANAGEMENT TAB FUNCTIONS --------------
def upload_and_index(files, title, author, db_name="default_db"):
    if not files:
        return "Nessun file caricato."
        
    documents = []
    doc_metadata = []
    
    for file in files:
        try:
            if file.name.endswith('.pdf'):
                text = extract_text_from_pdf(file.name)
            elif file.name.endswith('.docx'):
                text = extract_text_from_docx(file.name)
            else:
                with open(file.name, 'r', encoding='utf-8') as f:
                    text = f.read()
                    
            chunks = text_splitter.split_text(text)
            
            # Metadata per il documento
            doc_meta = DocumentMetadata(
                filename=os.path.basename(file.name),
                title=title,
                author=author,
                upload_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                chunks=len(chunks)
            )
            
            # Metadata per ogni chunk
            for i, chunk in enumerate(chunks):
                chunk_metadata = {
                    "content": chunk,
                    "source": os.path.basename(file.name),
                    "title": title,
                    "author": author,
                    "chunk_index": i,
                    "total_chunks": len(chunks),
                    "upload_date": doc_meta.upload_date
                }
                documents.append(chunk_metadata)
            
            doc_metadata.append(doc_meta)
            
        except Exception as e:
            logging.error(f"Errore durante la lettura del file {file.name}: {e}")
            continue

    if documents:
        try:
            db_path = f"faiss_index_{db_name}"
            os.makedirs(db_path, exist_ok=True)
            
            embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
            texts = [doc["content"] for doc in documents]
            metadatas = [{k: v for k, v in doc.items() if k != "content"} for doc in documents]
            
            vectorstore = FAISS.from_texts(texts, embeddings, metadatas=metadatas)
            vectorstore.save_local(db_path)
            
            # Salva i metadati del documento
            save_metadata(doc_metadata, db_name)
            
            return f"Documenti indicizzati con successo nel database {db_name}!"
        except Exception as e:
            logging.error(f"Errore durante l'indicizzazione: {e}")
            return f"Errore durante l'indicizzazione: {e}"
    
    return "Nessun documento processato."

def list_indexed_files(db_name="default_db"):
    db_path = f"faiss_index_{db_name}"
    metadata_file = os.path.join(db_path, "metadata.json")
    
    if not os.path.exists(metadata_file):
        return "Nessun file nel database."
    
    try:
        with open(metadata_file, 'r') as f:
            metadata = json.load(f)
        
        output = []
        for doc in metadata:
            output.append(
                f"πŸ“„ {doc['title']}\n"
                f"   Autore: {doc['author']}\n"
                f"   File: {doc['filename']}\n"
                f"   Chunks: {doc['chunks']}\n"
                f"   Caricato il: {doc['upload_date']}\n"
            )
        
        return "\n".join(output) if output else "Nessun documento nel database."
    except Exception as e:
        logging.error(f"Errore nella lettura dei metadati: {e}")
        return f"Errore nella lettura dei metadati: {e}"

def delete_file_from_database(file_name, db_name="default_db"):
    db_path = f"faiss_index_{db_name}"
    file_list_path = os.path.join(db_path, "file_list.txt")
    
    if not os.path.exists(file_list_path):
        return "Database non trovato."
    
    try:
        # Leggi la lista dei file
        with open(file_list_path, "r") as f:
            files = f.readlines()
        
        # Rimuovi il file dalla lista
        files = [f.strip() for f in files if f.strip() != file_name]
        
        # Riscrivi la lista aggiornata
        with open(file_list_path, "w") as f:
            for file in files:
                f.write(f"{file}\n")
        
        return f"File {file_name} rimosso dal database {db_name}."
    except Exception as e:
        return f"Errore durante la rimozione del file: {e}"

# -------------- DOCUMENT VISUALIZATION TAB FUNCTIONS --------------
def list_indexed_documents(db_name="default_db"):
    db_path = f"faiss_index_{db_name}"
    metadata_file = os.path.join(db_path, "metadata.json")
    
    if not os.path.exists(db_path):
        return f"Il database {db_name} non esiste."
    
    if not os.path.exists(metadata_file):
        return f"Nessun documento nel database {db_name}."
    
    try:
        with open(metadata_file, 'r') as f:
            metadata = json.load(f)
        
        if not metadata:
            return "Nessun documento trovato nel database."
        
        output_lines = ["πŸ“š Documenti nel database:"]
        for doc in metadata:
            output_lines.extend([
                f"\nπŸ“„ Documento: {doc['title']}",
                f"   πŸ“ Autore: {doc['author']}",
                f"   πŸ“ File: {doc['filename']}",
                f"   πŸ•’ Caricato il: {doc['upload_date']}",
                f"   πŸ“‘ Chunks: {doc['chunks']}"
            ])
        
        result = "\n".join(output_lines)
        logging.info(f"Documenti trovati nel database {db_name}: {result}")
        return result
        
    except Exception as e:
        error_msg = f"Errore nella lettura dei metadati: {e}"
        logging.error(error_msg)
        return error_msg

# -------------- NEW FEATURES TAB FUNCTIONS --------------
def search_documents(query, db_name="default_db"):
    db_path = f"faiss_index_{db_name}"
    if not os.path.exists(db_path):
        logging.warning(f"L'indice FAISS per il database {db_name} non esiste.")
        return "Database non trovato."
    
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    vectorstore = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
    
    # Perform a similarity search
    docs = vectorstore.similarity_search(query)
    
    if not docs:
        return "Nessun documento corrispondente alla query."
    
    # Collect the document contents
    results = [doc.page_content for doc in docs]
    return "\n\n".join(results)

def generate_summary(db_name="default_db"):
    # Placeholder for summarization logic
    return "This is a summary of the documents in the database."