File size: 9,000 Bytes
352ebdd
 
403260d
352ebdd
3c5ed5b
403260d
080146c
 
 
 
403260d
767bdf9
080146c
767bdf9
 
24083bf
352ebdd
 
 
 
 
 
 
e6b7117
 
 
 
352ebdd
 
 
 
e6b7117
352ebdd
 
 
 
24083bf
352ebdd
 
 
767bdf9
 
 
 
e6b7117
 
767bdf9
 
 
24083bf
403260d
24083bf
 
767bdf9
24083bf
 
403260d
 
352ebdd
 
 
 
 
 
403260d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
080146c
 
 
 
 
 
403260d
080146c
 
 
 
 
 
403260d
080146c
 
403260d
080146c
 
 
403260d
 
 
 
 
 
 
 
 
080146c
 
 
 
 
 
403260d
080146c
 
403260d
080146c
 
 
 
 
403260d
080146c
 
 
403260d
 
 
 
 
 
 
 
 
 
 
 
 
352ebdd
 
 
 
24083bf
352ebdd
24083bf
352ebdd
767bdf9
 
 
352ebdd
24083bf
 
facd13e
767bdf9
 
facd13e
 
24083bf
 
 
767bdf9
 
e6b7117
 
 
767bdf9
24083bf
767bdf9
352ebdd
24083bf
 
 
 
 
 
 
 
 
 
 
 
767bdf9
 
 
 
 
24083bf
 
 
 
 
767bdf9
 
 
 
 
 
 
352ebdd
 
 
 
767bdf9
403260d
 
 
 
 
 
 
 
 
 
 
352ebdd
 
 
 
 
 
 
 
 
24083bf
352ebdd
 
 
 
 
 
 
 
403260d
 
 
 
 
 
 
 
39c71c7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# ui/chatbot_tab.py

import logging
import gradio as gr
from app.utils.database_handling import list_databases
from app.configs.prompts import SYSTEM_PROMPTS
from app.llm_handling import answer_question, LLMType
from app.utils.helpers import extract_text_from_files
from app.utils.voice_utils import *
from app.utils.markdowns_utils import clean_markdown


logging.basicConfig(level=logging.INFO)


def create_chatbot_tab():
    """Crea il tab 'Chatbot' dell'interfaccia Gradio."""
    
    def chat_upload_and_respond(files, chat_history, db_name):
        """Gestisce il caricamento dei file e aggiorna la chat con il contenuto."""
        if chat_history is None:
            chat_history = []
        
        if files is None:
            files = []
        
        file_names = "\n".join(file.name.split('/')[-1] for file in files if hasattr(file, 'name'))
        text = extract_text_from_files(files)
        
        chat_history.append({
            "role": "assistant",
            "content": f"📄 File caricati:\n{file_names}\n\nContenuto dei documenti caricati.\n{text}"
        })
        
        return chat_history

    def respond(message, chat_history, db_name, prompt_type, llm_type):
        if chat_history is None:
            chat_history = []

        # Mappatura dei modelli
        llm_mapping = {
            "openai - GPT-4o-Mini": LLMType.OPENAI_GPT_4O_MINI,
            "local - Qwen 7B": LLMType.LOCAL_QWEN,
            "local - Phi-3 Mini": LLMType.LOCAL_PHI,
            "deepseek - DeepSeek Chat": LLMType.DEEPSEEK
        }
        
        selected_llm = llm_mapping.get(llm_type, LLMType.OPENAI_GPT_4O_MINI)
        
        messages = answer_question(
            message, 
            db_name, 
            prompt_type=prompt_type.split(" - ")[0],
            llm_type=selected_llm
        )
        
        chat_history.extend(messages)
        return "", chat_history

    def clear_chat():
        """Pulisce la cronologia della chat."""
        return [], []

    def format_conversation_for_download(chat_history):
        """Formatta la cronologia della chat per il download."""
        if not chat_history:
            return "Nessuna conversazione da scaricare"
        
        formatted_text = []
        for msg in chat_history:
            role = "User" if msg["role"] == "user" else "Assistant"
            content = msg["content"]
            formatted_text.append(f"{role}: {content}\n")
        
        return "\n".join(formatted_text)

    def download_conversation(chat_history):
        """Prepara il file di testo per il download."""
        conversation_text = format_conversation_for_download(chat_history)
        
        # Crea un file temporaneo con la conversazione
        import tempfile
        import os
        from pathlib import Path
        
        temp_dir = tempfile.gettempdir()
        temp_path = os.path.join(temp_dir, "conversazione.txt")
        
        # Assicurati che il contenuto sia in UTF-8
        with open(temp_path, "w", encoding="utf-8") as f:
            f.write(conversation_text)
        
        return str(Path(temp_path).absolute())

    # def download_audio(chat_history):
    #     """Scarica l'ultimo messaggio audio dalla chat"""
    #     try:
    #         if not chat_history:
    #             gr.Warning("Nessun messaggio nella chat")
    #             return None
                
    #         # Prendi l'ultimo messaggio assistant
    #         for msg in reversed(chat_history):
    #             if msg["role"] == "assistant" and "audio" in msg:
    #                 audio_path = msg["audio"]
    #                 if audio_path and os.path.exists(audio_path):
    #                     return audio_path
                    
    #         gr.Warning("Nessun audio disponibile per l'ultima risposta")
    #         return None
                
    #     except Exception as e:
    #         gr.Error(f"Errore durante il download dell'audio: {str(e)}")
            # return None

    def format_conversation_for_audio(chat_history):
        """Formatta la conversazione per la sintesi vocale"""
        audio_text = []
        for msg in chat_history:
            role = "Utente" if msg["role"] == "user" else "Assistente"
            audio_text.append(f"{role} dice: {msg['content']}")
        return "\n".join(audio_text)

    # def generate_conversation_audio(chat_history):
    #     """Genera audio della conversazione completa"""
    #     try:
    #         if not chat_history:
    #             gr.Warning("Nessun messaggio nella chat")
    #             return None
                
    #         conversation_text = format_conversation_for_audio(chat_history)
    #         audio_path = generate_speech(conversation_text, is_user=False)
            
    #         if audio_path and os.path.exists(audio_path):
    #             return audio_path
    #         else:
    #             gr.Warning("Errore nella generazione dell'audio")
    #             return None
                
    #     except Exception as e:
    #         gr.Error(f"Errore: {str(e)}")
    #         return None

    def convert_chat_to_audio(chat_history):
        if not chat_history:
            gr.Warning("Nessun messaggio da convertire")
            return None
            
        audio_path = generate_chat_audio(chat_history)
        if audio_path:
            return audio_path
        else:
            gr.Warning("Errore nella generazione dell'audio")
            return None

    # Ottieni la lista aggiornata dei database
    databases = list_databases()

    with gr.Tab("Chatbot"):
        # Prima riga: Dropdown selettori
        with gr.Row():
            with gr.Column(scale=1):
                db_name_chat = gr.Dropdown(
                    choices=list_databases(),  # Lista dinamica dei database
                    label="Seleziona Database",
                    value=list_databases()[0] if list_databases() else None
                )
            
            with gr.Column(scale=1):
                prompt_selector = gr.Dropdown(
                    choices=list(SYSTEM_PROMPTS.keys()),  # Usa le chiavi da SYSTEM_PROMPTS
                    label="Seleziona Stile Risposta",
                    value="tutor"
                )
            
            with gr.Column(scale=1):
                llm_selector = gr.Dropdown(
                    choices=[
                        "openai - GPT-4o-Mini",
                        "local - Qwen 7B", 
                        "local - Phi-3 Mini",
                        "deepseek - DeepSeek Chat"
                    ],
                    label="Seleziona Modello",
                    value="openai - GPT-4o-Mini"
                )
        
        # Chatbot e input
        chatbot = gr.Chatbot(label="Conversazione", type="messages")
        question_input = gr.Textbox(
            label="Fai una domanda",
            placeholder="Scrivi qui la tua domanda...",
            lines=2
        )
        
        # Bottoni per azioni
        with gr.Row():
            ask_button = gr.Button("Invia")
            upload_button = gr.Button("Carica Documenti")
            download_button = gr.Button("💾 Scarica Conversazione")
            clear_button = gr.Button("Pulisci Chat")       
            
        # box
        with gr.Row():
            file_input = gr.File(
                label="Carica PDF/Docx/TXT per la conversazione", 
                file_types=[".pdf", ".docx", ".txt"], 
                file_count="multiple",
                height="10px"
                          )
            download_file = gr.File(
                label="Download Conversazione",
                visible=True,
                interactive=False
                )
        
        # Stato della chat
        chat_state = gr.State([])

             
        with gr.Row():
            with gr.Column(scale=1):
                audio_button = gr.Button("🎤 Genera Audio Chat")
                audio_output = gr.Audio(label="Audio", visible=True)
            
        audio_button.click(
            fn=convert_chat_to_audio,
            inputs=[chatbot],
            outputs=[audio_output]
        )

        # Eventi per i bottoni
        upload_button.click(
            fn=chat_upload_and_respond,
            inputs=[file_input, chat_state, db_name_chat],
            outputs=chatbot
        )

        ask_button.click(
            fn=respond,
            inputs=[question_input, chat_state, db_name_chat, prompt_selector, llm_selector],  # Aggiungi il selettore del modello
            outputs=[question_input, chatbot]
        )

        clear_button.click(
            fn=clear_chat,
            outputs=[chatbot, chat_state]
        )

        # Aggiungi evento per il download
        download_button.click(
            fn=download_conversation,
            inputs=[chatbot],
            outputs=[download_file]
        )
 

    # Ritorna il riferimento al dropdown corretto
    return {"db_selector": db_name_chat}