Edurag_beta / app /llm_handling.py
Nugh75's picture
moduliazione del programma
080146c
raw
history blame
6.24 kB
# llm_handling.py
import logging
import os
from langchain_community.vectorstores import FAISS
import requests
from tenacity import retry, stop_after_attempt, wait_exponential
import json
from app.config import BASE_DB_PATH # Ensure correct import
from app.config import LLM_CONFIGS, LLMType # Import LLMType and LLM_CONFIGS
from app.configs.prompts import SYSTEM_PROMPTS
from app.utils.embedding_utils import get_embeddings
from app.utils.voice_utils import generate_speech # Retain import if needed
logging.basicConfig(level=logging.INFO)
# =====================================
# Functions related to LLM
# =====================================
def get_llm_client(llm_type: LLMType):
"""Obtains the appropriate client for the selected model"""
config = LLM_CONFIGS.get(llm_type)
if not config:
raise ValueError(f"Model {llm_type} not supported")
client_class = config["client"]
model = config["model"]
client = client_class() # Ensure no arguments are needed
return client, model
def get_system_prompt(prompt_type="tutor"):
"""Selects the appropriate system prompt"""
return SYSTEM_PROMPTS.get(prompt_type, SYSTEM_PROMPTS["tutor"])
def test_local_connection():
"""Checks connection to the local LLM server"""
try:
response = requests.get(f"http://192.168.82.5:1234/v1/health", timeout=5)
return response.status_code == 200
except:
return False
def read_metadata(db_path):
metadata_file = os.path.join(db_path, "metadata.json")
if os.path.exists(metadata_file):
with open(metadata_file, 'r') as f:
return json.load(f)
return []
def get_relevant_documents(vectorstore, question, min_similarity=0.7):
"""Retrieves relevant documents from the vectorstore"""
try:
enhanced_query = enhance_query(question)
docs_and_scores = vectorstore.similarity_search_with_score(
enhanced_query,
k=8
)
filtered_docs = [
doc for doc, score in docs_and_scores if score >= min_similarity
]
logging.info(f"Query: {question}")
logging.info(f"Documents found: {len(filtered_docs)}")
return filtered_docs[:5] if filtered_docs else []
except Exception as e:
logging.error(f"Error retrieving documents: {e}")
return []
def enhance_query(question):
stop_words = set(['il', 'lo', 'la', 'i', 'gli', 'le', 'un', 'uno', 'una'])
words = [w for w in question.lower().split() if w not in stop_words]
enhanced_query = " ".join(words)
return enhanced_query
def log_search_results(question, docs_and_scores):
logging.info(f"Query: {question}")
for idx, (doc, score) in enumerate(docs_and_scores, 1):
logging.info(f"Doc {idx} - Score: {score:.4f}")
logging.info(f"Content: {doc.page_content[:100]}...")
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def answer_question(question, db_name, prompt_type="tutor", chat_history=None, llm_type=None):
if chat_history is None:
chat_history = []
try:
embeddings = get_embeddings()
db_path = os.path.join(BASE_DB_PATH, f"faiss_index_{db_name}")
metadata_list = read_metadata(db_path)
metadata_dict = {m["filename"]: m for m in metadata_list}
vectorstore = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True)
relevant_docs = get_relevant_documents(vectorstore, question)
if not relevant_docs:
return [
{"role": "user", "content": question},
{"role": "assistant", "content": "Sorry, no relevant information found to answer your question. Try rephrasing or asking a different question."}
]
sources = []
for idx, doc in enumerate(relevant_docs, 1):
source_file = doc.metadata.get("source", "Unknown")
if source_file in metadata_dict:
meta = metadata_dict[source_file]
sources.append(f"📚 {meta['title']} (Author: {meta['author']}) - Part {idx} of {len(relevant_docs)}")
context = "\n".join([
f"[Part {idx+1} of {len(relevant_docs)}]\n{doc.page_content}"
for idx, doc in enumerate(relevant_docs)
])
sources_text = "\n\nSources consulted:\n" + "\n".join(set(sources))
prompt = SYSTEM_PROMPTS[prompt_type].format(context=context)
prompt += "\nAlways cite the sources used for your response, including the document title and author."
messages = [
{"role": "system", "content": prompt},
*[{"role": m["role"], "content": m["content"]} for m in chat_history],
{"role": "user", "content": question}
]
client, model = get_llm_client(llm_type)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.7,
max_tokens=2048
)
answer = response.choices[0].message.content + sources_text
return [
{"role": "user", "content": question},
{"role": "assistant", "content": answer}
]
except Exception as e:
logging.error(f"Error generating response: {e}")
error_msg = "Local LLM not available. Try again later or use OpenAI." if "local" in str(llm_type) else str(e)
return [
{"role": "user", "content": question},
{"role": "assistant", "content": f"⚠️ {error_msg}"}
]
class DocumentRetriever:
def __init__(self, db_path):
self.embeddings = get_embeddings()
self.vectorstore = FAISS.load_local(
db_path,
self.embeddings,
allow_dangerous_deserialization=True
)
def get_relevant_chunks(self, question):
enhanced_query = enhance_query(question)
docs_and_scores = self.vectorstore.similarity_search_with_score(
enhanced_query,
k=8
)
log_search_results(question, docs_and_scores)
# Implement _filter_relevant_docs or remove the call
# return self._filter_relevant_docs(docs_and_scores)
if __name__ == "__main__":
pass