|
import streamlit as st |
|
from transformers import pipeline |
|
from PIL import Image |
|
|
|
MODEL_1 = "google/vit-base-patch16-224" |
|
MIN_ACEPTABLE_SCORE = 0.1 |
|
MAX_N_LABELS = 5 |
|
MODEL_2 = "nateraw/vit-age-classifier" |
|
MODELS = [ |
|
"google/vit-base-patch16-224", |
|
"nateraw/vit-age-classifier", |
|
"microsoft/resnet-50", |
|
"Falconsai/nsfw_image_detection", |
|
"cafeai/cafe_aesthetic", |
|
"microsoft/resnet-18", |
|
"microsoft/resnet-34", |
|
"microsoft/resnet-101", |
|
"microsoft/resnet-152", |
|
"microsoft/swin-tiny-patch4-window7-224", |
|
"-- Reinstated on testing--", |
|
"microsoft/beit-base-patch16-224-pt22k-ft22k", |
|
"-- New --" |
|
|
|
] |
|
|
|
def classify(image, model): |
|
classifier = pipeline("image-classification", model=model) |
|
result= classifier(image) |
|
return result |
|
|
|
def save_result(result): |
|
st.write("In the future, this function will save the result in a database.") |
|
|
|
def print_result(result): |
|
|
|
comulative_discarded_score = 0 |
|
for i in range(len(result)): |
|
if result[i]['score'] < MIN_ACEPTABLE_SCORE: |
|
comulative_discarded_score += result[i]['score'] |
|
else: |
|
st.write(result[i]['label']) |
|
st.progress(result[i]['score']) |
|
st.write(result[i]['score']) |
|
|
|
st.write(f"comulative_discarded_score:") |
|
st.progress(comulative_discarded_score) |
|
st.write(comulative_discarded_score) |
|
|
|
|
|
|
|
def main(): |
|
st.title("Image Classification") |
|
input_image = st.file_uploader("Upload Image") |
|
shosen_model = st.selectbox("Select the model to use", MODELS) |
|
|
|
if input_image is not None: |
|
image_to_classify = Image.open(input_image) |
|
st.image(image_to_classify, caption="Uploaded Image", use_column_width=True) |
|
|
|
if st.button("Classify"): |
|
image_to_classify = Image.open(input_image) |
|
classification_obj1 =[] |
|
avable_models = st.selectbox |
|
|
|
classification_result = classify(image_to_classify, shosen_model) |
|
classification_obj1.append(classification_result) |
|
print_result(classification_result) |
|
save_result(classification_result) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |