NursNurs commited on
Commit
67b506f
·
1 Parent(s): 2c499a7

Application files

Browse files
Files changed (2) hide show
  1. app.py +55 -0
  2. requirements.txt +0 -0
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from tqdm import tqdm
4
+ from peft import PeftModel, PeftConfig
5
+ from transformers import AutoModelForSeq2SeqLM
6
+ from transformers import AutoTokenizer
7
+
8
+ config = PeftConfig.from_pretrained("NursNurs/T5ForReverseDictionary")
9
+ model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
10
+ model = PeftModel.from_pretrained(model, "NursNurs/T5ForReverseDictionary")
11
+
12
+ tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
13
+
14
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+
16
+ def return_top_k(sentence, k=10):
17
+
18
+ inputs = [f"Descripton : {sentence}. Word : "]
19
+
20
+ inputs = tokenizer(
21
+ inputs,
22
+ padding=True, truncation=True,
23
+ return_tensors="pt",
24
+ )
25
+
26
+
27
+ model.to(device)
28
+
29
+ with torch.no_grad():
30
+ inputs = {k: v.to(device) for k, v in inputs.items()}
31
+ output_sequences = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10, num_beams=k, num_return_sequences=k, #max_length=3,
32
+ top_p = 50, output_scores=True, return_dict_in_generate=True) #repetition_penalty=10000.0
33
+ #print("output_sequences", output_sequences)
34
+ logits = output_sequences['sequences_scores'].clone().detach()
35
+ decoded_probabilities = torch.softmax(logits, dim=0)
36
+
37
+
38
+ #all word predictions
39
+ predictions = [tokenizer.decode(tokens, skip_special_tokens=True) for tokens in output_sequences['sequences']]
40
+ probabilities = [round(float(prob), 2) for prob in decoded_probabilities]
41
+
42
+ return predictions
43
+
44
+
45
+ st.title("You name it!")
46
+
47
+ # adding the text that will show in the text box as default
48
+ default_value = "Type the description of the word you have in mind!"
49
+
50
+ sent = st.text_area("Text", default_value, height = 275)
51
+
52
+ result = return_top_k(sent)
53
+ st.write("Here are my guesses about your word:")
54
+ st.write(result)
55
+
requirements.txt ADDED
Binary file (5.03 kB). View file