NursNurs commited on
Commit
8fee044
·
1 Parent(s): 3d842e7

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -55
app.py DELETED
@@ -1,55 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- from tqdm import tqdm
4
- from peft import PeftModel, PeftConfig
5
- from transformers import AutoModelForSeq2SeqLM
6
- from transformers import AutoTokenizer
7
-
8
- config = PeftConfig.from_pretrained("NursNurs/T5ForReverseDictionary")
9
- model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
10
- model = PeftModel.from_pretrained(model, "NursNurs/T5ForReverseDictionary")
11
-
12
- tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
13
-
14
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
-
16
- def return_top_k(sentence, k=10):
17
-
18
- inputs = [f"Descripton : {sentence}. Word : "]
19
-
20
- inputs = tokenizer(
21
- inputs,
22
- padding=True, truncation=True,
23
- return_tensors="pt",
24
- )
25
-
26
-
27
- model.to(device)
28
-
29
- with torch.no_grad():
30
- inputs = {k: v.to(device) for k, v in inputs.items()}
31
- output_sequences = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10, num_beams=k, num_return_sequences=k, #max_length=3,
32
- top_p = 50, output_scores=True, return_dict_in_generate=True) #repetition_penalty=10000.0
33
- #print("output_sequences", output_sequences)
34
- logits = output_sequences['sequences_scores'].clone().detach()
35
- decoded_probabilities = torch.softmax(logits, dim=0)
36
-
37
-
38
- #all word predictions
39
- predictions = [tokenizer.decode(tokens, skip_special_tokens=True) for tokens in output_sequences['sequences']]
40
- probabilities = [round(float(prob), 2) for prob in decoded_probabilities]
41
-
42
- return predictions
43
-
44
-
45
- st.title("You name it!")
46
-
47
- # adding the text that will show in the text box as default
48
- default_value = "Type the description of the word you have in mind!"
49
-
50
- sent = st.text_area("Text", default_value, height = 275)
51
-
52
- result = return_top_k(sent)
53
- st.write("Here are my guesses about your word:")
54
- st.write(result)
55
-