Spaces:
Sleeping
Sleeping
__
Browse files- app.py +118 -0
- apps.py +0 -36
- icd_embedded.csv +0 -0
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import from 3rd party libraries
|
2 |
+
import streamlit as st
|
3 |
+
import streamlit.components.v1 as components
|
4 |
+
# import streamlit_analytics
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import re
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
import string
|
10 |
+
import nltk
|
11 |
+
from nltk.corpus import stopwords
|
12 |
+
from nltk.stem import WordNetLemmatizer
|
13 |
+
nltk.download("stopwords")
|
14 |
+
nltk.download('wordnet')
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
import plotly.express as px
|
17 |
+
import pandas as pd
|
18 |
+
from sklearn.decomposition import PCA
|
19 |
+
|
20 |
+
st.set_page_config(page_title="Mental disorder by description", page_icon="π€")
|
21 |
+
|
22 |
+
def convert_string_to_numpy_array(s):
|
23 |
+
'''Function to convert a string to a NumPy array'''
|
24 |
+
numbers_list = re.findall(r'-?\d+\.\d+', s)
|
25 |
+
return np.array(numbers_list, dtype=np.float64)
|
26 |
+
|
27 |
+
#load the model
|
28 |
+
@st.cache_resource
|
29 |
+
def get_models():
|
30 |
+
st.write('Loading the model...')
|
31 |
+
name = "stsb-bert-large"
|
32 |
+
model = SentenceTransformer(name)
|
33 |
+
st.write("The app is loaded and ready to use!")
|
34 |
+
lemmatizer = WordNetLemmatizer()
|
35 |
+
return model, lemmatizer
|
36 |
+
|
37 |
+
model, lemmatizer = get_models()
|
38 |
+
stop_words = set(stopwords.words('english'))
|
39 |
+
|
40 |
+
#load the dataframe with disorder embeddings
|
41 |
+
@st.cache_data # π Add the caching decorator
|
42 |
+
def load_data():
|
43 |
+
df_icd = pd.read_csv('icd_embedded.csv')
|
44 |
+
df_icd['numpy_array'] = df_icd['Embeddings'].apply(convert_string_to_numpy_array)
|
45 |
+
icd_embeddings = np.array(df_icd["numpy_array"].tolist())
|
46 |
+
return df_icd, icd_embeddings
|
47 |
+
|
48 |
+
df_icd, icd_embeddings = load_data()
|
49 |
+
|
50 |
+
#create a list of disease names
|
51 |
+
@st.cache_data # π Add the caching decorator
|
52 |
+
def create_disease_list():
|
53 |
+
disease_names = []
|
54 |
+
for name in df_icd["Disease"]:
|
55 |
+
disease_names.append(name)
|
56 |
+
return disease_names
|
57 |
+
|
58 |
+
disease_names = create_disease_list()
|
59 |
+
|
60 |
+
if 'descriptions' not in st.session_state:
|
61 |
+
st.session_state.descriptions = []
|
62 |
+
|
63 |
+
def similarity_top(descr_emb, disorder_embs):
|
64 |
+
# reshaping the character_embedding to match the shape of mental_disorder_embeddings
|
65 |
+
descr_emb = descr_emb.reshape(1, -1)
|
66 |
+
# calculating the cosine similarity
|
67 |
+
similarity_scores = cosine_similarity(disorder_embs, descr_emb)
|
68 |
+
|
69 |
+
scores_names = []
|
70 |
+
for score, name in zip(similarity_scores, disease_names):
|
71 |
+
data = {"disease_name": name, "similarity_score": score}
|
72 |
+
scores_names.append(data)
|
73 |
+
|
74 |
+
scores_names = sorted(scores_names, key=lambda x: x['similarity_score'], reverse=True)
|
75 |
+
|
76 |
+
results = []
|
77 |
+
|
78 |
+
for item in scores_names:
|
79 |
+
disease_name = item['disease_name']
|
80 |
+
similarity_score = item['similarity_score'][0]
|
81 |
+
results.append((disease_name, similarity_score))
|
82 |
+
|
83 |
+
return results[:5]
|
84 |
+
|
85 |
+
|
86 |
+
# with text_spinner_placeholder:
|
87 |
+
# with st.spinner("Please wait while your Tweet is being generated..."):
|
88 |
+
# mood_prompt = f"{mood} " if mood else ""
|
89 |
+
# if style:
|
90 |
+
# twitter = twe.Tweets(account=style)
|
91 |
+
# tweets = twitter.fetch_tweets()
|
92 |
+
# tweets_prompt = "\n\n".join(tweets)
|
93 |
+
# prompt = (
|
94 |
+
# f"Write a {mood_prompt}Tweet about {topic} in less than 120 characters "
|
95 |
+
# f"and in the style of the following Tweets:\n\n{tweets_prompt}\n\n"
|
96 |
+
|
97 |
+
# Configure Streamlit page and state
|
98 |
+
st.title("Detect the disorder")
|
99 |
+
st.markdown(
|
100 |
+
"This mini-app predicts a mental disorder based on your description."
|
101 |
+
)
|
102 |
+
|
103 |
+
input = st.text_input(label="Your description)", placeholder="Insert a description of a character")
|
104 |
+
if input:
|
105 |
+
input_embed = model.encode(input)
|
106 |
+
sim_score = similarity_top(input_embed, icd_embeddings)
|
107 |
+
st.write(sim_score)
|
108 |
+
|
109 |
+
# mood = st.text_input(
|
110 |
+
# label="Mood (e.g. inspirational, funny, serious) (optional)",
|
111 |
+
# placeholder="inspirational",
|
112 |
+
# )
|
113 |
+
# style = st.text_input(
|
114 |
+
# label="Twitter account handle to style-copy recent Tweets (optional, limited by Twitter's API)",
|
115 |
+
# placeholder="elonmusk",
|
116 |
+
# )
|
117 |
+
|
118 |
+
text_spinner_placeholder = st.empty()
|
apps.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
# Import from 3rd party libraries
|
2 |
-
import streamlit as st
|
3 |
-
import streamlit.components.v1 as components
|
4 |
-
# import streamlit_analytics
|
5 |
-
|
6 |
-
|
7 |
-
# with text_spinner_placeholder:
|
8 |
-
# with st.spinner("Please wait while your Tweet is being generated..."):
|
9 |
-
# mood_prompt = f"{mood} " if mood else ""
|
10 |
-
# if style:
|
11 |
-
# twitter = twe.Tweets(account=style)
|
12 |
-
# tweets = twitter.fetch_tweets()
|
13 |
-
# tweets_prompt = "\n\n".join(tweets)
|
14 |
-
# prompt = (
|
15 |
-
# f"Write a {mood_prompt}Tweet about {topic} in less than 120 characters "
|
16 |
-
# f"and in the style of the following Tweets:\n\n{tweets_prompt}\n\n"
|
17 |
-
|
18 |
-
# Configure Streamlit page and state
|
19 |
-
st.set_page_config(page_title="Tweet", page_icon="π€")
|
20 |
-
|
21 |
-
st.title("Generate Tweets")
|
22 |
-
st.markdown(
|
23 |
-
"This mini-app predicts a mental disorder based on your description."
|
24 |
-
)
|
25 |
-
|
26 |
-
topic = st.text_input(label="Topic (or hashtag)", placeholder="AI")
|
27 |
-
mood = st.text_input(
|
28 |
-
label="Mood (e.g. inspirational, funny, serious) (optional)",
|
29 |
-
placeholder="inspirational",
|
30 |
-
)
|
31 |
-
style = st.text_input(
|
32 |
-
label="Twitter account handle to style-copy recent Tweets (optional, limited by Twitter's API)",
|
33 |
-
placeholder="elonmusk",
|
34 |
-
)
|
35 |
-
|
36 |
-
text_spinner_placeholder = st.empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
icd_embedded.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|