Spaces:
Running
Running
File size: 19,010 Bytes
c703dbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import gradio as gr
from gradio_pdf import PDF
import base64
import requests
import json
import re
import fitz
import os
API_KEY = os.getenv("API_KEY")
IMAGE_MODEL = "opengvlab/internvl3-14b:free"
def extract_json_from_code_block(text):
if not isinstance(text, str):
return {"error": "Invalid input: text must be a string."}
try:
# Standard Markdown code block
match = re.search(r"```json\s*(\{.*?\})\s*```", text, re.DOTALL)
if match:
json_str = match.group(1)
else:
json_match = re.search(r"^\s*(\{.*?\})\s*$", text, re.DOTALL)
if json_match:
json_str = json_match.group(1)
else:
first_brace = text.find('{')
last_brace = text.rfind('}')
if first_brace != -1 and last_brace != -1 and last_brace > first_brace:
json_str = text[first_brace:last_brace + 1]
else:
return {"error": "No JSON block or discernible JSON object found in response."}
# Attempt to fix common issues like trailing commas before parsing
json_str_fixed = re.sub(r',\s*([\}\]])', r'\1', json_str)
return json.loads(json_str_fixed)
except json.JSONDecodeError as e:
return {"error": f"Invalid JSON in model response: {str(e)}", "problematic_snippet (approx)": json_str_fixed,
"raw_output": text}
except Exception as e:
return {"error": f"An unexpected error occurred during JSON extraction: {str(e)}", "raw_output": text}
def convert_pdf_to_image(pdf_path, page_number=0):
try:
if not os.path.exists(pdf_path):
print(f"Error: PDF file not found at {pdf_path}")
return None
doc = fitz.open(pdf_path)
if not doc.page_count > 0:
doc.close()
print(f"Warning: PDF '{os.path.basename(pdf_path)}' has no pages.")
return None
if page_number >= doc.page_count:
page_number = doc.page_count - 1
print(f"Warning: Requested page {page_number + 1} out of bounds. Using last page ({page_number + 1}).")
page = doc.load_page(page_number)
pix = page.get_pixmap(dpi=200)
base_name = os.path.splitext(os.path.basename(pdf_path))[0]
safe_base_name = re.sub(r'[^\w\-_]', '_', base_name)
temp_image_path = f"temp_page_{safe_base_name}_{page_number}.png"
pix.save(temp_image_path)
doc.close()
return temp_image_path
except Exception as e:
print(f"Error converting PDF '{os.path.basename(pdf_path)}' to image: {e}")
return None
def process_document_with_vision_model(image_path):
if image_path is None:
return {"error": "No image provided for vision model processing (image_path is None)."}
if not os.path.exists(image_path):
return {"error": f"Image file does not exist at path: {image_path}"}
try:
with open(image_path, "rb") as f:
encoded_image = base64.b64encode(f.read()).decode("utf-8")
data_url = f"data:image/png;base64,{encoded_image}"
prompt = f"""You are a highly capable AI assistant specialized in document analysis and data extraction.
Your mission is to meticulously examine the provided image, identify the type of document, and extract all pertinent information into a structured JSON format.
Your entire response must be a **single, valid JSON object**. Do not include any introductory or concluding text outside of this JSON.
(Your detailed prompt structure here - ensure it's the same as your working version)
"""
payload = {
"model": IMAGE_MODEL,
"messages": [{"role": "user", "content": [{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": data_url}}]}],
"max_tokens": 4096
}
headers = {"Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}
response = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload,
timeout=120) # Added timeout
response.raise_for_status()
result = response.json()
if "choices" in result and len(result["choices"]) > 0 and "message" in result["choices"][0] and "content" in \
result["choices"][0]["message"]:
model_raw_output = result["choices"][0]["message"]["content"]
return extract_json_from_code_block(model_raw_output)
else:
print(f"Unexpected API response format: {json.dumps(result, indent=2)}")
return {"error": "Unexpected API response format from vision model.", "raw_api_response": result}
except requests.exceptions.Timeout:
print("Network Error: Request to OpenRouter API timed out.")
return {"error": "Network Error: Request to OpenRouter API timed out."}
except requests.exceptions.RequestException as e:
print(f"Network Error: {str(e)}")
return {"error": f"Network Error: {str(e)}"}
except Exception as e:
print(
f"General Error in vision model processing for {os.path.basename(image_path if image_path else 'No Image Path')}: {str(e)}")
return {"error": f"General Error in vision model processing: {str(e)}"}
# --- Custom CSS for a Modern Dark UI ---
inspired_dark_css = """
/* Overall App Container */
.gradio-container {
font-family: 'Inter', sans-serif;
background-color: var(--neutral-950, #0c0c0f); /* Very dark background */
padding: 0; /* Remove default padding if using full-width sections */
}
/* Main Title Area */
#app-header {
background-color: var(--neutral-900, #121218);
padding: 20px 30px;
border-bottom: 1px solid var(--neutral-800, #2a2a38);
margin-bottom: 0px; /* Spacing after header */
}
#app-title {
text-align: center;
color: var(--primary-400, #A78BFA);
margin-bottom: 2px;
font-size: 28px !important;
font-weight: 600;
}
#app-subtitle {
text-align: center;
color: var(--neutral-400, #888898);
margin-top: 0px;
font-size: 16px !important;
font-weight: 400;
}
/* Main content row styling */
#main-content-row {
padding: 20px 30px; /* Add padding around the main content columns */
gap: 30px; /* Space between columns */
}
/* "Node" or "Block" Styling for Columns/Sections */
.input-block, .output-block-column {
background-color: var(--neutral-900, #121218); /* Slightly lighter than page bg */
border-radius: 12px;
padding: 25px;
border: 1px solid var(--neutral-800, #2a2a38);
box-shadow: 0 4px 12px rgba(0,0,0, 0.2); /* Subtle shadow for depth */
height: 100%; /* Make blocks in a row take same height if desired */
}
.input-block h4, .output-block-column h4 { /* Section Headers */
color: var(--neutral-200, #e0e0e0);
margin-top: 0;
margin-bottom: 20px;
font-size: 18px;
border-bottom: 1px solid var(--neutral-700, #3a3a48);
padding-bottom: 10px;
}
/* File Input Area */
.file-input-box > div[data-testid="block-label"] { display: none; } /* Hide default label if custom header is used */
.file-input-box .upload-box, .file-input-box > .svelte- যাহ코 > .upload-box { /* Target Gradio's file input */
border: 2px dashed var(--primary-600, #7C3AED);
background-color: var(--neutral-800, #1a1a22);
border-radius: 8px;
padding: 30px;
color: var(--neutral-300, #c0c0c0);
}
.file-input-box .upload-box:hover, .file-input-box > .svelte- যাহ코 > .upload-box:hover {
background-color: var(--neutral-700, #22222a);
border-color: var(--primary-500, #8B5CF6);
}
.input-block .input-guidance p { /* Styling for help text */
font-size: 0.85em;
color: var(--neutral-400, #888898);
text-align: center;
margin-top: 15px;
}
/* Output Tabs Styling */
.output-block-column .gr-tabs { margin-top: -10px; } /* Adjust if needed */
.output-block-column .gr-tabs .tab-nav button { /* Tab buttons */
background-color: transparent !important;
color: var(--neutral-400, #888898) !important;
border-radius: 6px 6px 0 0 !important;
padding: 10px 18px !important;
border-bottom: 2px solid transparent !important;
}
.output-block-column .gr-tabs .tab-nav button.selected { /* Selected tab button */
color: var(--primary-400, #A78BFA) !important;
border-bottom: 2px solid var(--primary-400, #A78BFA) !important;
background-color: var(--neutral-800, #1a1a22) !important; /* Slight bg for selected tab */
}
.tab-item-content { /* Content area within each tab */
background-color: var(--neutral-850, #16161c); /* Slightly different from block bg for depth */
padding: 20px;
border-radius: 0 0 8px 8px;
min-height: 400px; /* Ensure tabs have some content height */
border: 1px solid var(--neutral-750, #30303c);
border-top: none;
}
/* Preview Output (PDF/Image) Styling within Tab */
.preview-output-container { /* Specific container for PDF/Image */
display: flex;
align-items: center;
justify-content: center;
width: 100%;
height: 100%; /* Takes height from .tab-item-content */
}
.preview-output-container img, .preview-output-container iframe {
max-width: 100%;
max-height: 500px; /* Max height for preview */
object-fit: contain;
border-radius: 4px;
background-color: var(--neutral-100, #f0f0f0); /* Light bg for image/pdf itself for visibility */
}
/* JSON Output Styling within Tab */
.json-output-container .gr-json, .json-output-container .gr-code {
background-color: var(--neutral-900, #0e0e12) !important; /* Darker for code/json */
border: 1px solid var(--neutral-700, #3a3a48) !important;
color: var(--neutral-200, #e0e0e0) !important;
padding: 15px !important;
border-radius: 6px !important;
height: 100% !important;
font-size: 0.9em !important;
}
/* Attempt to make JSON content more readable */
.json-output-container .gr-json span { color: inherit !important; }
.json-output-container .gr-json .str { color: #90EE90 !important; } /* LightGreen strings */
.json-output-container .gr-json .num { color: #ADD8E6 !important; } /* LightBlue numbers */
.json-output-container .gr-json .bool { color: #FFB6C1 !important; } /* LightPink booleans */
.json-output-container .gr-json .null { color: #D3D3D3 !important; } /* LightGray nulls */
.json-output-container .gr-json .key { color: #FFD700 !important; } /* Gold keys */
footer{display:none !important}
"""
app_theme = gr.themes.Monochrome(
primary_hue=gr.themes.Color(
c50='#F5F3FF', c100='#EDE9FE', c200='#DDD6FE', c300='#C4B5FD', c400='#A78BFA',
c500='#8B5CF6', c600='#7C3AED', c700='#6D28D9', c800='#5B21B6', c900='#4C1D95',
c950='#3B0B7D'
),
secondary_hue="purple",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_md,
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"],
font_mono=[gr.themes.GoogleFont("Fira Code"), "monospace"]
).set()
app_theme = gr.themes.Monochrome(
primary_hue=gr.themes.Color("#F5F3FF", "#EDE9FE", "#DDD6FE", "#C4B5FD", "#A78BFA", "#8B5CF6", "#7C3AED", "#6D28D9",
"#5B21B6", "#4C1D95", "#3B0B7D"),
secondary_hue=gr.themes.Color("#F5F3FF", "#EDE9FE", "#DDD6FE", "#C4B5FD", "#A78BFA", "#8B5CF6", "#7C3AED",
"#6D28D9", "#5B21B6", "#4C1D95", "#3B0B7D"), # Align with primary
neutral_hue=gr.themes.colors.slate,
radius_size=gr.themes.sizes.radius_md,
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"],
font_mono=[gr.themes.GoogleFont("Fira Code"), "monospace"],
)
with gr.Blocks(
theme=app_theme,
css=inspired_dark_css,
title="Zimbabwean Document AI Extractor"
) as app:
with gr.Column(elem_id="app-header", scale=0):
gr.Markdown("<h1 id='app-title'>Zim Docs Optical Character Recognition (OCR)-JSON</h1>", elem_id="title_md")
gr.Markdown("<h3 id='app-subtitle'>Effortlessly convert scanned documents and images into ready-to-use JSON data. </h3>",
elem_id="subtitle_md")
with gr.Row(elem_id="main-content-row", equal_height=True):
with gr.Column(scale=1, min_width=400, elem_classes=["input-block"]):
gr.Markdown("<h4>📂 OCR → JSON</h4>")
file_input = gr.File(
label="Drag & Drop or Click to Upload (PDF, PNG, JPG)",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".bmp", ".gif"],
type="filepath",
elem_classes=["file-input-box"]
)
with gr.Group(elem_classes=["input-guidance"]):
gr.Markdown(
"""
<p>Supported: PDF, PNG, JPG, JPEG, BMP, GIF.<br>
For optimal results, ensure the document image is clear and well-lit.</p>
"""
)
with gr.Column(scale=2, min_width=600, elem_classes=["output-block-column"]):
gr.Markdown("<h4>Extraction Results</h4>")
with gr.Tabs(elem_id="output_tabs"):
with gr.TabItem("📄 Document Preview", elem_id="preview_tab", elem_classes=["tab-item-content"]):
with gr.Group(elem_classes=["preview-output-container"]):
pdf_output = PDF(visible=False, show_label=False, elem_classes=["preview-output-item"])
image_output = gr.Image(visible=False, show_label=False, show_share_button=False,
show_download_button=True, elem_classes=["preview-output-item"])
no_preview_message = gr.Markdown("Upload a document to see a preview.", visible=True,
elem_id="no_preview_msg")
with gr.TabItem("Extracted Data (JSON)", elem_id="json_tab", elem_classes=["tab-item-content"]):
with gr.Group(elem_classes=["json-output-container"]):
json_output = gr.JSON(visible=False, show_label=False, elem_classes=["json-output-item"])
no_json_message = gr.Markdown("Analysis results will appear here.", visible=True,
elem_id="no_json_msg")
def update_outputs_and_previews(file_path_str):
pdf_val, pdf_vis_update = None, gr.update(visible=False)
img_val, img_vis_update = None, gr.update(visible=False)
json_val, json_vis_update = {"status": "Awaiting document..."}, gr.update(visible=False)
no_preview_msg_update = gr.update(visible=True, value="Upload a document to see a preview.")
no_json_msg_update = gr.update(visible=True, value="Analysis results will appear here.")
if file_path_str is None:
json_val = {"status": "No document provided. Please upload a file."}
return pdf_val, pdf_vis_update, img_val, img_vis_update, json_val, json_vis_update, no_preview_msg_update, no_json_msg_update
temp_image_to_process = None
pdf_display_path = None
image_display_path = None
delete_temp_file = False
current_file_path = file_path_str
if current_file_path.lower().endswith('.pdf'):
pdf_display_path = current_file_path
temp_image_to_process = convert_pdf_to_image(current_file_path)
if temp_image_to_process is None:
error_msg = {"error": f"Failed to convert PDF: {os.path.basename(current_file_path)}."}
print(error_msg["error"])
pdf_val, pdf_vis_update = pdf_display_path, gr.update(visible=True)
img_val, img_vis_update = None, gr.update(visible=False)
json_val, json_vis_update = error_msg, gr.update(visible=True)
no_preview_msg_update = gr.update(visible=False)
no_json_msg_update = gr.update(visible=False)
return pdf_val, pdf_vis_update, img_val, img_vis_update, json_val, json_vis_update, no_preview_msg_update, no_json_msg_update
delete_temp_file = True
pdf_val, pdf_vis_update = pdf_display_path, gr.update(visible=True)
no_preview_msg_update = gr.update(visible=False)
elif current_file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
image_display_path = current_file_path
temp_image_to_process = current_file_path
img_val, img_vis_update = image_display_path, gr.update(visible=True)
no_preview_msg_update = gr.update(visible=False)
else:
error_msg = {"error": "Unsupported file format. Please upload PDF, PNG, JPG, JPEG, BMP, or GIF."}
print(error_msg["error"])
json_val, json_vis_update = error_msg, gr.update(visible=True)
no_json_msg_update = gr.update(visible=False)
return pdf_val, pdf_vis_update, img_val, img_vis_update, json_val, json_vis_update, no_preview_msg_update, no_json_msg_update
if temp_image_to_process is None:
error_msg = {"error": "Internal error: No image available for processing after file check."}
print(error_msg["error"])
json_val, json_vis_update = error_msg, gr.update(visible=True)
no_json_msg_update = gr.update(visible=False)
return pdf_val, pdf_vis_update, img_val, img_vis_update, json_val, json_vis_update, no_preview_msg_update, no_json_msg_update
extracted_json_result = process_document_with_vision_model(temp_image_to_process)
json_val, json_vis_update = extracted_json_result, gr.update(visible=True)
no_json_msg_update = gr.update(visible=False)
if delete_temp_file and temp_image_to_process and os.path.exists(
temp_image_to_process) and temp_image_to_process != current_file_path:
try:
os.remove(temp_image_to_process)
print(f"Temporary image '{temp_image_to_process}' deleted.")
except Exception as e:
print(f"Error deleting temporary image '{temp_image_to_process}': {e}")
if pdf_display_path:
img_vis_update = gr.update(visible=False)
img_val = None
elif image_display_path:
pdf_vis_update = gr.update(visible=False)
pdf_val = None
return pdf_val, pdf_vis_update, img_val, img_vis_update, json_val, json_vis_update, no_preview_msg_update, no_json_msg_update
all_outputs = [
pdf_output, pdf_output,
image_output, image_output,
json_output, json_output,
no_preview_message,
no_json_message
]
file_input.change(
update_outputs_and_previews,
inputs=[file_input],
outputs=all_outputs
)
if __name__ == "__main__":
app.launch(show_error=True, show_api=False, debug=True) |