NyashaK commited on
Commit
d649c85
·
1 Parent(s): b6b5cc7

changing config

Browse files
__pycache__/app.cpython-310.pyc CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
 
app.py CHANGED
@@ -113,19 +113,21 @@ async def main(message: cl.Message):
113
  if query_engine is None:
114
  raise ValueError("Query engine not found in session.")
115
 
 
116
  logger.info(f"Received message: {message.content}")
 
117
  res = await cl.make_async(query_engine.query)(message.content)
118
  logger.info("LLM response received.")
 
119
 
120
- # Use full response (no streaming)
121
- full_response = getattr(res, "response", str(res))
122
- await cl.Message(content=full_response, author="Assistant").send()
123
 
 
124
  logger.info("Message sent back to client.")
125
- logger.info(f"Full response: {full_response}")
126
 
127
  except Exception as e:
128
  error_msg = f"An error occurred: {str(e)}"
129
  await cl.Message(content=error_msg, author="Assistant").send()
130
  logger.error(error_msg)
131
-
 
113
  if query_engine is None:
114
  raise ValueError("Query engine not found in session.")
115
 
116
+ msg = cl.Message(content="", author="Assistant")
117
  logger.info(f"Received message: {message.content}")
118
+
119
  res = await cl.make_async(query_engine.query)(message.content)
120
  logger.info("LLM response received.")
121
+ full_response = ""
122
 
123
+ for token in res.response_gen:
124
+ await msg.stream_token(token)
125
+ full_response += token
126
 
127
+ await msg.send()
128
  logger.info("Message sent back to client.")
 
129
 
130
  except Exception as e:
131
  error_msg = f"An error occurred: {str(e)}"
132
  await cl.Message(content=error_msg, author="Assistant").send()
133
  logger.error(error_msg)
 
logs/ronald_ai.log CHANGED
@@ -85,3 +85,70 @@
85
  - **Sports Ticket Sales Forecasting (Feb 2025):** Built ETL pipelines integrating attendance, promotions, and weather data to enhance forecasting precision using XGBoost and LSTM models.
86
 
87
  These projects and experiences highlight Ronald's proficiency in creating efficient, scalable, and data-driven solutions using a diverse set of data engineering tools and platforms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  - **Sports Ticket Sales Forecasting (Feb 2025):** Built ETL pipelines integrating attendance, promotions, and weather data to enhance forecasting precision using XGBoost and LSTM models.
86
 
87
  These projects and experiences highlight Ronald's proficiency in creating efficient, scalable, and data-driven solutions using a diverse set of data engineering tools and platforms.
88
+ 2025-06-12 13:31:19.522 | INFO | app.py:<module>:9 - Starting Ronald AI App
89
+ 2025-06-12 13:31:22.228 | INFO | app.py:start:59 - API_KEY loaded.
90
+ 2025-06-12 13:31:24.742 | INFO | app.py:start:71 - LLM and embedding models initialized.
91
+ 2025-06-12 13:31:24.784 | INFO | app.py:start:59 - API_KEY loaded.
92
+ 2025-06-12 13:31:25.608 | INFO | app.py:start:71 - LLM and embedding models initialized.
93
+ 2025-06-12 13:31:25.660 | INFO | app.py:start:59 - API_KEY loaded.
94
+ 2025-06-12 13:31:26.315 | INFO | app.py:start:71 - LLM and embedding models initialized.
95
+ 2025-06-12 13:31:26.350 | INFO | app.py:start:59 - API_KEY loaded.
96
+ 2025-06-12 13:31:26.979 | INFO | app.py:start:71 - LLM and embedding models initialized.
97
+ 2025-06-12 13:31:33.573 | INFO | app.py:main:116 - Received message: Provide a markdown-formatted summary of Ronald’s technical skills grouped into categories such as Programming, Data Engineering, Cloud, Machine Learning, and Tools.
98
+ 2025-06-12 13:31:34.088 | INFO | app.py:main:118 - LLM response received.
99
+ 2025-06-12 13:31:35.998 | INFO | app.py:main:124 - Message sent back to client.
100
+ 2025-06-12 13:31:35.999 | INFO | app.py:main:125 - Full response: ```markdown
101
+ ## Technical Skills Summary
102
+
103
+ ### Programming & Machine Learning
104
+ - **Languages**: Python, R
105
+ - **Frameworks & Libraries**: TensorFlow, PyTorch, scikit-learn, Darts, ARIMA, LLMs, RAG, LlamaIndex
106
+
107
+ ### Data Engineering
108
+ - **Tools**: Apache Spark, Kafka, Apache Airflow, Docker, Kubernetes, dbt
109
+ - **Databases**: S3
110
+
111
+ ### Cloud & Databases
112
+ - **Cloud Platforms**: AWS, GCP
113
+ - **Databases**: Databricks, PostgreSQL, MySQL, DynamoDB, MongoDB, DuckDB, Redshift, NoSQL
114
+
115
+ ### Visualization
116
+ - **Tools**: Dash (Plotly), Power BI, Tableau, Excel, Matplotlib, Seaborn
117
+
118
+ ### Certifications
119
+ - Microsoft Azure AI Fundamentals
120
+ - Databricks: Generative AI Fundamentals
121
+ ```
122
+ 2025-06-12 13:38:12.713 | INFO | app.py:<module>:9 - Starting Ronald AI App
123
+ 2025-06-12 13:38:14.284 | INFO | app.py:start:59 - API_KEY loaded.
124
+ 2025-06-12 13:38:16.576 | INFO | app.py:start:71 - LLM and embedding models initialized.
125
+ 2025-06-12 13:38:16.909 | INFO | app.py:start:59 - API_KEY loaded.
126
+ 2025-06-12 13:38:17.597 | INFO | app.py:start:71 - LLM and embedding models initialized.
127
+ 2025-06-12 13:38:17.658 | INFO | app.py:start:59 - API_KEY loaded.
128
+ 2025-06-12 13:38:18.278 | INFO | app.py:start:71 - LLM and embedding models initialized.
129
+ 2025-06-12 13:38:18.311 | INFO | app.py:start:59 - API_KEY loaded.
130
+ 2025-06-12 13:38:19.022 | INFO | app.py:start:71 - LLM and embedding models initialized.
131
+ 2025-06-12 13:38:21.297 | INFO | app.py:main:116 - Received message: List Ronald’s most impactful projects in bullet points. For each, include the project name, tools used, the problem it addressed, and the outcome. Use clear paragraphs or bullet points for readability.
132
+ 2025-06-12 13:38:21.791 | INFO | app.py:main:118 - LLM response received.
133
+ 2025-06-12 13:38:24.376 | INFO | app.py:main:124 - Message sent back to client.
134
+ 2025-06-12 13:38:24.376 | INFO | app.py:main:125 - Full response: - **Log-Realtime-Analysis Project (Dec 2024)**
135
+ - **Tools Used:** Kafka, Spark, DynamoDB, Python Dash
136
+ - **Problem Addressed:** Real-time log processing and visualization for handling high-volume log events.
137
+ - **Outcome:** Designed a scalable architecture capable of processing 60,000 log events per second, utilizing a Kafka-Spark ETL pipeline for data extraction, transformation, and loading, and DynamoDB for real-time metric storage. Python Dash was employed to create interactive dashboards for visualization.
138
+
139
+ - **Sports Ticket Sales Forecasting (Feb 2025)**
140
+ - **Tools Used:** XGBoost, LSTM, Python
141
+ - **Problem Addressed:** Accurate forecasting of ticket sales for the Atlanta Braves.
142
+ - **Outcome:** Achieved a 3.3% forecast error, the best in the competition, by developing XGBoost and LSTM models. The models integrated attendance, promotions, and weather data to enhance forecasting precision.
143
+ 2025-06-12 13:40:20.244 | INFO | app.py:start:59 - API_KEY loaded.
144
+ 2025-06-12 13:40:21.151 | INFO | app.py:start:71 - LLM and embedding models initialized.
145
+ 2025-06-12 13:40:22.766 | INFO | app.py:main:116 - Received message: List Ronald’s academic background and certifications. For education, include the degree, institution, and year. For certifications, include the name, issuing organization, and year. Format the answer using bullet points or markdown.
146
+ 2025-06-12 13:40:23.118 | INFO | app.py:main:118 - LLM response received.
147
+ 2025-06-12 13:40:24.453 | INFO | app.py:main:124 - Message sent back to client.
148
+ 2025-06-12 13:40:24.454 | INFO | app.py:main:125 - Full response: - **Education:**
149
+ - Master of Science in Business Analytics, Emory University, Atlanta, GA, May 2025
150
+ - Bachelor of Business Studies and Computing Science, University of Zimbabwe, Harare, Zimbabwe, Dec 2021
151
+
152
+ - **Certifications:**
153
+ - Microsoft Azure AI Fundamentals
154
+ - Databricks: Generative AI Fundamentals
requirements.txt CHANGED
@@ -2,4 +2,5 @@ chainlit>=0.7.700
2
  llama-index-core~=0.12.41
3
  llama-index-embeddings-huggingface~=0.5.4
4
  llama-index-llms-openrouter~=0.3.2
5
- loguru
 
 
2
  llama-index-core~=0.12.41
3
  llama-index-embeddings-huggingface~=0.5.4
4
  llama-index-llms-openrouter~=0.3.2
5
+ loguru
6
+ websockets