|
import gradio as gr |
|
import torch |
|
import os |
|
import spaces |
|
import uuid |
|
|
|
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler |
|
from diffusers.utils import export_to_video |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from PIL import Image |
|
|
|
|
|
bases = { |
|
"Cartoon": "frankjoshua/toonyou_beta6", |
|
"Realistic": "emilianJR/epiCRealism", |
|
"3d": "Lykon/DreamShaper", |
|
"Anime": "Yntec/mistoonAnime2" |
|
} |
|
step_loaded = None |
|
base_loaded = "Realistic" |
|
motion_loaded = None |
|
|
|
|
|
if not torch.cuda.is_available(): |
|
raise NotImplementedError("No GPU detected!") |
|
|
|
device = "cuda" |
|
dtype = torch.float16 |
|
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") |
|
|
|
|
|
from transformers import CLIPFeatureExtractor |
|
|
|
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate_image(prompt, base, motion, step, progress=gr.Progress()): |
|
global step_loaded |
|
global base_loaded |
|
global motion_loaded |
|
print(prompt, base, step) |
|
|
|
if step_loaded != step: |
|
repo = "ByteDance/AnimateDiff-Lightning" |
|
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" |
|
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) |
|
step_loaded = step |
|
|
|
if base_loaded != base: |
|
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) |
|
base_loaded = base |
|
|
|
if motion_loaded != motion: |
|
pipe.unload_lora_weights() |
|
if motion != "": |
|
pipe.load_lora_weights(motion, adapter_name="motion") |
|
pipe.set_adapters(["motion"], [0.7]) |
|
motion_loaded = motion |
|
|
|
progress((0, step)) |
|
def progress_callback(i, t, z): |
|
progress((i+1, step)) |
|
|
|
output = pipe(prompt=prompt, guidance_scale=1.2, num_inference_steps=step, callback=progress_callback, callback_steps=1) |
|
|
|
name = str(uuid.uuid4()).replace("-", "") |
|
path = f"/tmp/{name}.mp4" |
|
export_to_video(output.frames[0], path, fps=10) |
|
return path |
|
|
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.HTML( |
|
"<h1><center>Instant⚡Video</center></h1>" + |
|
"<p><center>Lightning-fast text-to-video generation</center></p>" + |
|
"<p><center><span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.</center></p>" + |
|
"<p><center><strong> First Image processing takes time then images generate faster.</p>" + |
|
"<p><center>Write prompts in style as Given in Example</p>" |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label='Prompt' |
|
) |
|
with gr.Row(): |
|
select_base = gr.Dropdown( |
|
label='Base model', |
|
choices=[ |
|
"Cartoon", |
|
"Realistic", |
|
"3d", |
|
"Anime", |
|
], |
|
value=base_loaded, |
|
interactive=True |
|
) |
|
select_motion = gr.Dropdown( |
|
label='Motion', |
|
choices=[ |
|
("Default", ""), |
|
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), |
|
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), |
|
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), |
|
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), |
|
("Pan left", "guoyww/animatediff-motion-lora-pan-left"), |
|
("Pan right", "guoyww/animatediff-motion-lora-pan-right"), |
|
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), |
|
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), |
|
], |
|
value="guoyww/animatediff-motion-lora-zoom-in", |
|
interactive=True |
|
) |
|
select_step = gr.Dropdown( |
|
label='Inference steps', |
|
choices=[ |
|
('1-Step', 1), |
|
('2-Step', 2), |
|
('4-Step', 4), |
|
('8-Step', 8), |
|
], |
|
value=4, |
|
interactive=True |
|
) |
|
submit = gr.Button( |
|
scale=1, |
|
variant='primary' |
|
) |
|
video = gr.Video( |
|
label='AnimateDiff-Lightning', |
|
autoplay=True, |
|
height=512, |
|
width=512, |
|
elem_id="video_output" |
|
) |
|
|
|
prompt.submit( |
|
fn=generate_image, |
|
inputs=[prompt, select_base, select_motion, select_step], |
|
outputs=video, |
|
) |
|
submit.click( |
|
fn=generate_image, |
|
inputs=[prompt, select_base, select_motion, select_step], |
|
outputs=video, |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["Focus: Eiffel Tower (Animate: Clouds moving)"], |
|
["Focus: Lion in forest (Animate: Lion as walking)"], |
|
["Focus: Astronaut in Space"], |
|
["Focus: Group of Birds in sky (Animate: Birds Moving) (Shot From distance)"], |
|
["Focus: Statue of liberty (Shot from Drone) (Animate: Drone coming toward statue)"], |
|
], |
|
fn=generate_image, |
|
inputs=[prompt, select_base, select_motion, select_step], |
|
outputs=video, |
|
cache_examples=False, |
|
) |
|
|
|
demo.queue().launch() |