File size: 14,760 Bytes
d6afb45
 
7ee1b98
d6afb45
 
2a7d1fa
 
 
 
 
46d853f
2a7d1fa
 
 
 
 
57c61e4
2a7d1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
5039147
 
2a7d1fa
 
5039147
2a7d1fa
5039147
 
2a7d1fa
5039147
 
 
 
2a7d1fa
 
 
 
d513153
2a7d1fa
20cc82f
2a7d1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5039147
2a7d1fa
455d65b
2a7d1fa
 
 
455d65b
2a7d1fa
 
 
 
 
 
d6afb45
2a7d1fa
 
 
 
 
 
 
 
 
29fe941
 
2a7d1fa
 
 
 
 
 
 
 
 
 
 
f7222e9
2a7d1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267d21f
6fc27a6
4a7dea6
2a7d1fa
 
 
 
 
 
 
 
 
 
 
6a02a37
 
2a7d1fa
6a02a37
2a7d1fa
6a02a37
2a7d1fa
 
 
 
d160b4b
2a7d1fa
d513153
 
 
2a7d1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8832566
2a7d1fa
df4b728
2a7d1fa
fc6479b
20cc82f
 
df4b728
 
9f5fe72
2a7d1fa
 
 
 
 
 
 
 
 
 
20cc82f
 
 
 
 
2a7d1fa
20cc82f
 
 
 
 
 
 
07bc596
2a7d1fa
20cc82f
2a7d1fa
fc6479b
2a7d1fa
b97439a
2a7d1fa
455d65b
8812113
2a7d1fa
 
455d65b
8812113
2a7d1fa
 
 
 
 
f586a70
 
 
 
4551e44
9fe62de
f586a70
df0618d
07cfa54
f586a70
3381f0b
9fe62de
3381f0b
c69bac0
817d95e
7313962
c69bac0
 
 
43954cf
9fe62de
ba81343
 
 
 
8eb0cc4
7313962
21a312e
f586a70
 
 
289044f
4551e44
6005136
d6afb45
 
 
 
 
 
 
 
 
 
2a7d1fa
 
e1bf925
 
 
 
dc21b34
e1bf925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d28c4c
e1bf925
 
fa8ddec
e1bf925
 
 
 
 
 
 
 
fa8ddec
e1bf925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a7d1fa
 
 
 
 
 
d6afb45
2a7d1fa
 
 
 
 
 
 
d6afb45
2a7d1fa
d6afb45
 
f6ad611
 
 
 
 
 
f586a70
 
 
56e3a34
26f9624
792d4ad
4551e44
f586a70
 
4551e44
f586a70
176890c
d6afb45
2a7d1fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import gradio as gr
import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from prompts import (
    FINDER,
    COMPRESS_HISTORY_PROMPT,
    COMPRESS_DATA_PROMPT,
    COMPRESS_DATA_PROMPT_SMALL,
    LOG_PROMPT,
    LOG_RESPONSE,
    PREFIX,
    TASK_PROMPT,
)
api=HfApi()



client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

def parse_action(string: str):
    print("PARSING:")
    print(string)
    assert string.startswith("action:")
    idx = string.find("action_input=")
    print(idx)
    if idx == -1:
        print ("idx == -1")
        print (string[8:])
        return string[8:], None

    print ("last return:")
    print (string[8 : idx - 1])
    print (string[idx + 13 :].strip("'").strip('"'))
    return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"')



VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 1000

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def call_search(purpose, task, history, action_input):
    return_list=[]
    print (action_input)
    #if action_input in query.tasks:
    print ("trying")        
    try:
        if action_input != "" and action_input != None:
            action_input.strip('""')
            #model_list = api.list_models(filter=f"{action_input}",sort="last_modified",limit=1000,direction=-1)
            #model_list = api.list_models(filter=f"{action_input}",limit=1000)
            model_list = api.list_models(filter=f"{action_input}")
            this_obj = list(model_list)
            print(f'THIS_OBJ :: {this_obj[0]}')
            for i,eb in enumerate(this_obj):
                #return_list.append(this_obj[i].id)
                return_list.append({"id":this_obj[i].id,
                                    "author":this_obj[i].author,
                                    "created_at":this_obj[i].created_at,
                                    "last_modified":this_obj[i].last_modified,
                                    "private":this_obj[i].private,
                                    "gated":this_obj[i].gated,
                                    "disabled":this_obj[i].disabled,
                                    "downloads":this_obj[i].downloads,
                                    "likes":this_obj[i].likes,
                                    "library_name":this_obj[i].library_name,
                                    "tags":this_obj[i].tags,
                                    "pipeline_tag":this_obj[i].pipeline_tag,
                                   })
            #print (return_list)
            c=0
            rl = len(return_list)
            print(rl)
            for i in str(return_list):
                if i == " " or i==",":
                    c +=1
            
            print (c)
            if rl > MAX_DATA:
                print("compressing...")
                return_list = compress_data(rl,purpose,task,return_list)
            history = "observation: the search results are:\n {}\n".format(return_list)
            return "MAIN", None, history, task
        else: 
            history = "observation: I need to trigger a search using the following syntax:\naction: SEARCH action_input=URL\n"
            return "UPDATE-TASK", None, history, task
    except Exception as e:
        print (e)
        history = "observation: I need to trigger a search using the following syntax:\naction: SEARCH action_input=URL\n"
        return "UPDATE-TASK", None, history, task

        #else:
    #    history = "observation: The search query I used did not return a valid response"
        
    return "MAIN", None, history, task


def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    purpose,
    **prompt_kwargs,
):
    timestamp=datetime.datetime.now()

    print(seed)
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=max_tokens,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    
    content = PREFIX.format(
        timestamp=timestamp,
        purpose=purpose,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
        #yield resp

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp

def compress_data(c,purpose, task, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT_SMALL,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=2048,
            seed=seed,
            purpose=purpose,
            task=task,
            knowledge=new_history,
            history=hist,
        )
        new_history = resp
        print (resp)
        out+=resp
        e=e+chunk
        s=s+chunk
    '''
    resp = run_gpt(
        COMPRESS_DATA_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=1024,
        seed=seed,
        purpose=purpose,
        task=task,
        knowledge=new_history,
        history="All data has been recieved.",
    )'''
    print ("final" + resp)
    history = "observation: {}\n".format(resp)
    return history




def compress_history(purpose, task, history):
    resp = run_gpt(
        COMPRESS_HISTORY_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=512,
        seed=random.randint(1,1000000000),
        purpose=purpose,
        task=task,
        history=history,
    )
    history = "observation: {}\n".format(resp)
    return history


def call_main(purpose, task, history, action_input):
    resp = run_gpt(
        FINDER,
        stop_tokens=["observation:", "task:", "action:"],
        max_tokens=512,
        seed=random.randint(1,1000000000),
        purpose=purpose,
        task=task,
        history=history,
    )
    lines = resp.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history += "{}\n".format(line)
        if line.startswith("action: COMPLETE"):
            print("COMPLETE called")
            return "COMPLETE", None, history, task
        if line.startswith("action:"):
            action_name, action_input = parse_action(line)
            print(f'ACTION::{action_name} -- INPUT :: {action_input}')
            history += "{}\n".format(line)
            return action_name, action_input, history, task
        else:
            
            history += "{}\n".format(line)
            #assert False, "unknown action: {}".format(line)
            #return "UPDATE-TASK", None, history, task
    if "VERBOSE":
        print(history)
    return "MAIN", None, history, task


def call_set_task(purpose, task, history, action_input):
    task = run_gpt(
        TASK_PROMPT,
        stop_tokens=[],
        max_tokens=1024,
        seed=random.randint(1,1000000000),
        purpose=purpose,
        task=task,
        history=history,
    ).strip("\n")
    history += "observation: task has been updated to: {}\n".format(task)
    return "MAIN", None, history, task



###########################################################
def search_all(url):
    source=""
    return source



def find_all(purpose,task,history, url):
    return_list=[]
    print (url)
    #if action_input in query.tasks:
    print (f"trying URL:: {url}")        
    try:
        if url != "" and url != None:    
            #rawp = []
            out = []
            source = requests.get(url)
            #source = urllib.request.urlopen(url).read()
            soup = bs4.BeautifulSoup(source.content,'lxml')
            # title of the page
            print(soup.title)
            # get attributes:
            print(soup.title.name)
            # get values:
            print(soup.title.string)
            # beginning navigation:
            print(soup.title.parent.name)
            #rawp.append([tag.name for tag in soup.find_all()] )
            print([tag.name for tag in soup.find_all()])
            rawp=(f'RAW TEXT RETURNED:\n*********\n{soup.text}\n*********\n')
            out.append(rawp)
            q=("a","p","span","content","article")
            for p in soup.find_all(f'{q}'):
                out.append([{q:p.string,"additional":z,"parent":p.parent.name,"previous":[b for b in p.previous],"first-child":[b.name for b in p.children],"content":p}])
            c=0
            rl = len(out)
            print(f'rl:: {rl}')
            for ea in out:
                for i in str(ea):
                    if i == " " or i==",":
                        c +=1
            print (f'c:: {c}')
            if rl > MAX_DATA:
                print("compressing...")
                rawp = compress_data(c,purpose,task,out)    
            print (rawp)
            history += "observation: the search results are:\n {}\n".format(rawp)
            task = "complete?"
            return "MAIN", None, history, task
        else: 
            history += "observation: I need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n"
            return "MAIN", None, history, task
    except Exception as e:
        print (e)
        history += "observation: I need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n"
        return "MAIN", None, history, task

        #else:
    #    history = "observation: The search query I used did not return a valid response"
        
    return "MAIN", None, history, task


def find_it(url,q=None,num=None):
    out = []
    out_l = []
    z=""
    source = urllib.request.urlopen(url).read()
    soup = bs4.BeautifulSoup(source,'lxml')
    
    for p in soup.find_all(f'{q}'):
        if num != "":
            z=p.get(f'{num}')
        
        try:
            test = soup.select(f'{p.name}:first-child')
            
            #print(p.findChildren())
        except Exception as e:
            print (e)
        #out.append(p)
        out.append([{q:p.string,"additional":z,"parent":p.parent.name,"previous":[b for b in p.previous],"first-child":[b.name for b in p.children],"content":p}])
        if p.string !=None:
            out_l.append(p.string)
        else:
            out_l.append(z)
        #out.append(p.parent.name)
        print(dir(p))
        print(p.parent.name)
    for url in soup.find_all('a'):
        print(url.get('href'))
        
    #print(soup.get_text())
    return out,out_l
    
def find_it2(url):
    response = requests.get(url,a1=None,q2=None,q3=None)
    try:
        response.raise_for_status()
        soup = BeautifulSoup(response.content, 'lxml')
        out = 'URL Links:\n'.join([p.text for p in soup.find_all('a')])
        return out
    except Exception as e:
        print (e)
        return e
#################################

NAME_TO_FUNC = {
    "MAIN": call_main,
    "UPDATE-TASK": call_set_task,
    "SEARCH_ENGINE": find_all,
    "SCRAPE_WEBSITE": find_all,
}


def run_action(purpose, task, history, action_name, action_input):
    if action_name == "COMPLETE":
        print("Complete - Exiting")
        #exit(0) 
        return "COMPLETE", None, history, task

    # compress the history when it is long
    if len(history.split("\n")) > MAX_HISTORY:
        if VERBOSE:
            print("COMPRESSING HISTORY")
        history = compress_history(purpose, task, history)
    if action_name in NAME_TO_FUNC:
        
        assert action_name in NAME_TO_FUNC

        print(f"RUN: {action_name}  ACTION_INPUT: {action_input}")
        return NAME_TO_FUNC[action_name](purpose, task, history, action_input)
    else:
        history += "observation: The TOOL I tried to use returned an error, I need to select a tool from: (UPDATE-TASK, SEARCH_ENGINE, WEBSITE_SCRAPE, COMPLETE)\n"

        return "MAIN", None, history, task

def run(purpose,history):
    task=None
    history = ""
    #if not history:
    #    history = []
    action_name = "SEARCH_ENGINE" if task is None else "MAIN"
    action_input = None
    while True:
        print("")
        print("")
        print("---")
        #print("purpose:", purpose)
        print("task:", task)
        print("---")
        #print(history)
        print("---")

        action_name, action_input, history, task = run_action(
            purpose,
            task,
            history,
            action_name,
            action_input,
        )
        yield history
        if action_name == "COMPLETE":
            return history




examples =[
    "find the most popular model that I can use to generate an image by providing a text prompt",
    "return the top 10 models that I can use to identify objects in images",
    "which models have the most likes from each category?"
]


gr.ChatInterface(
    fn=run,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    title="Mixtral 46.7B Powered <br> Search",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)

'''
with gr.Blocks() as app:
    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Textbox()
        with gr.Column(scale=2):
            q = gr.Textbox(value="p")
        with gr.Column(scale=2):
            num = gr.Textbox()
    with gr.Row():
        all_btn = gr.Button("Load")
        find_btn = gr.Button("Find")
    with gr.Row():
        rawp = gr.JSON()
        outp = gr.JSON()
        outl = gr.Textbox()
    
    all_btn.click(find_all,[inp,q,num],[rawp])
    find_btn.click(find_it,[inp,q,num],[outp,outl])
    
app.launch()

'''