Spaces:
Sleeping
Sleeping
File size: 14,760 Bytes
d6afb45 7ee1b98 d6afb45 2a7d1fa 46d853f 2a7d1fa 57c61e4 2a7d1fa 5039147 2a7d1fa 5039147 2a7d1fa 5039147 2a7d1fa 5039147 2a7d1fa d513153 2a7d1fa 20cc82f 2a7d1fa 5039147 2a7d1fa 455d65b 2a7d1fa 455d65b 2a7d1fa d6afb45 2a7d1fa 29fe941 2a7d1fa f7222e9 2a7d1fa 267d21f 6fc27a6 4a7dea6 2a7d1fa 6a02a37 2a7d1fa 6a02a37 2a7d1fa 6a02a37 2a7d1fa d160b4b 2a7d1fa d513153 2a7d1fa 8832566 2a7d1fa df4b728 2a7d1fa fc6479b 20cc82f df4b728 9f5fe72 2a7d1fa 20cc82f 2a7d1fa 20cc82f 07bc596 2a7d1fa 20cc82f 2a7d1fa fc6479b 2a7d1fa b97439a 2a7d1fa 455d65b 8812113 2a7d1fa 455d65b 8812113 2a7d1fa f586a70 4551e44 9fe62de f586a70 df0618d 07cfa54 f586a70 3381f0b 9fe62de 3381f0b c69bac0 817d95e 7313962 c69bac0 43954cf 9fe62de ba81343 8eb0cc4 7313962 21a312e f586a70 289044f 4551e44 6005136 d6afb45 2a7d1fa e1bf925 dc21b34 e1bf925 5d28c4c e1bf925 fa8ddec e1bf925 fa8ddec e1bf925 2a7d1fa d6afb45 2a7d1fa d6afb45 2a7d1fa d6afb45 f6ad611 f586a70 56e3a34 26f9624 792d4ad 4551e44 f586a70 4551e44 f586a70 176890c d6afb45 2a7d1fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import gradio as gr
import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
#from query import tasks
from prompts import (
FINDER,
COMPRESS_HISTORY_PROMPT,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
PREFIX,
TASK_PROMPT,
)
api=HfApi()
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def parse_action(string: str):
print("PARSING:")
print(string)
assert string.startswith("action:")
idx = string.find("action_input=")
print(idx)
if idx == -1:
print ("idx == -1")
print (string[8:])
return string[8:], None
print ("last return:")
print (string[8 : idx - 1])
print (string[idx + 13 :].strip("'").strip('"'))
return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"')
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 1000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def call_search(purpose, task, history, action_input):
return_list=[]
print (action_input)
#if action_input in query.tasks:
print ("trying")
try:
if action_input != "" and action_input != None:
action_input.strip('""')
#model_list = api.list_models(filter=f"{action_input}",sort="last_modified",limit=1000,direction=-1)
#model_list = api.list_models(filter=f"{action_input}",limit=1000)
model_list = api.list_models(filter=f"{action_input}")
this_obj = list(model_list)
print(f'THIS_OBJ :: {this_obj[0]}')
for i,eb in enumerate(this_obj):
#return_list.append(this_obj[i].id)
return_list.append({"id":this_obj[i].id,
"author":this_obj[i].author,
"created_at":this_obj[i].created_at,
"last_modified":this_obj[i].last_modified,
"private":this_obj[i].private,
"gated":this_obj[i].gated,
"disabled":this_obj[i].disabled,
"downloads":this_obj[i].downloads,
"likes":this_obj[i].likes,
"library_name":this_obj[i].library_name,
"tags":this_obj[i].tags,
"pipeline_tag":this_obj[i].pipeline_tag,
})
#print (return_list)
c=0
rl = len(return_list)
print(rl)
for i in str(return_list):
if i == " " or i==",":
c +=1
print (c)
if rl > MAX_DATA:
print("compressing...")
return_list = compress_data(rl,purpose,task,return_list)
history = "observation: the search results are:\n {}\n".format(return_list)
return "MAIN", None, history, task
else:
history = "observation: I need to trigger a search using the following syntax:\naction: SEARCH action_input=URL\n"
return "UPDATE-TASK", None, history, task
except Exception as e:
print (e)
history = "observation: I need to trigger a search using the following syntax:\naction: SEARCH action_input=URL\n"
return "UPDATE-TASK", None, history, task
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
purpose,
**prompt_kwargs,
):
timestamp=datetime.datetime.now()
print(seed)
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose=purpose,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c,purpose, task, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=2048,
seed=seed,
purpose=purpose,
task=task,
knowledge=new_history,
history=hist,
)
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
'''
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=1024,
seed=seed,
purpose=purpose,
task=task,
knowledge=new_history,
history="All data has been recieved.",
)'''
print ("final" + resp)
history = "observation: {}\n".format(resp)
return history
def compress_history(purpose, task, history):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
seed=random.randint(1,1000000000),
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_main(purpose, task, history, action_input):
resp = run_gpt(
FINDER,
stop_tokens=["observation:", "task:", "action:"],
max_tokens=512,
seed=random.randint(1,1000000000),
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
if line.startswith("action: COMPLETE"):
print("COMPLETE called")
return "COMPLETE", None, history, task
if line.startswith("action:"):
action_name, action_input = parse_action(line)
print(f'ACTION::{action_name} -- INPUT :: {action_input}')
history += "{}\n".format(line)
return action_name, action_input, history, task
else:
history += "{}\n".format(line)
#assert False, "unknown action: {}".format(line)
#return "UPDATE-TASK", None, history, task
if "VERBOSE":
print(history)
return "MAIN", None, history, task
def call_set_task(purpose, task, history, action_input):
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=1024,
seed=random.randint(1,1000000000),
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
###########################################################
def search_all(url):
source=""
return source
def find_all(purpose,task,history, url):
return_list=[]
print (url)
#if action_input in query.tasks:
print (f"trying URL:: {url}")
try:
if url != "" and url != None:
#rawp = []
out = []
source = requests.get(url)
#source = urllib.request.urlopen(url).read()
soup = bs4.BeautifulSoup(source.content,'lxml')
# title of the page
print(soup.title)
# get attributes:
print(soup.title.name)
# get values:
print(soup.title.string)
# beginning navigation:
print(soup.title.parent.name)
#rawp.append([tag.name for tag in soup.find_all()] )
print([tag.name for tag in soup.find_all()])
rawp=(f'RAW TEXT RETURNED:\n*********\n{soup.text}\n*********\n')
out.append(rawp)
q=("a","p","span","content","article")
for p in soup.find_all(f'{q}'):
out.append([{q:p.string,"additional":z,"parent":p.parent.name,"previous":[b for b in p.previous],"first-child":[b.name for b in p.children],"content":p}])
c=0
rl = len(out)
print(f'rl:: {rl}')
for ea in out:
for i in str(ea):
if i == " " or i==",":
c +=1
print (f'c:: {c}')
if rl > MAX_DATA:
print("compressing...")
rawp = compress_data(c,purpose,task,out)
print (rawp)
history += "observation: the search results are:\n {}\n".format(rawp)
task = "complete?"
return "MAIN", None, history, task
else:
history += "observation: I need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n"
return "MAIN", None, history, task
except Exception as e:
print (e)
history += "observation: I need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n"
return "MAIN", None, history, task
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task
def find_it(url,q=None,num=None):
out = []
out_l = []
z=""
source = urllib.request.urlopen(url).read()
soup = bs4.BeautifulSoup(source,'lxml')
for p in soup.find_all(f'{q}'):
if num != "":
z=p.get(f'{num}')
try:
test = soup.select(f'{p.name}:first-child')
#print(p.findChildren())
except Exception as e:
print (e)
#out.append(p)
out.append([{q:p.string,"additional":z,"parent":p.parent.name,"previous":[b for b in p.previous],"first-child":[b.name for b in p.children],"content":p}])
if p.string !=None:
out_l.append(p.string)
else:
out_l.append(z)
#out.append(p.parent.name)
print(dir(p))
print(p.parent.name)
for url in soup.find_all('a'):
print(url.get('href'))
#print(soup.get_text())
return out,out_l
def find_it2(url):
response = requests.get(url,a1=None,q2=None,q3=None)
try:
response.raise_for_status()
soup = BeautifulSoup(response.content, 'lxml')
out = 'URL Links:\n'.join([p.text for p in soup.find_all('a')])
return out
except Exception as e:
print (e)
return e
#################################
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH_ENGINE": find_all,
"SCRAPE_WEBSITE": find_all,
}
def run_action(purpose, task, history, action_name, action_input):
if action_name == "COMPLETE":
print("Complete - Exiting")
#exit(0)
return "COMPLETE", None, history, task
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
if VERBOSE:
print("COMPRESSING HISTORY")
history = compress_history(purpose, task, history)
if action_name in NAME_TO_FUNC:
assert action_name in NAME_TO_FUNC
print(f"RUN: {action_name} ACTION_INPUT: {action_input}")
return NAME_TO_FUNC[action_name](purpose, task, history, action_input)
else:
history += "observation: The TOOL I tried to use returned an error, I need to select a tool from: (UPDATE-TASK, SEARCH_ENGINE, WEBSITE_SCRAPE, COMPLETE)\n"
return "MAIN", None, history, task
def run(purpose,history):
task=None
history = ""
#if not history:
# history = []
action_name = "SEARCH_ENGINE" if task is None else "MAIN"
action_input = None
while True:
print("")
print("")
print("---")
#print("purpose:", purpose)
print("task:", task)
print("---")
#print(history)
print("---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
action_name,
action_input,
)
yield history
if action_name == "COMPLETE":
return history
examples =[
"find the most popular model that I can use to generate an image by providing a text prompt",
"return the top 10 models that I can use to identify objects in images",
"which models have the most likes from each category?"
]
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B Powered <br> Search",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
'''
with gr.Blocks() as app:
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox()
with gr.Column(scale=2):
q = gr.Textbox(value="p")
with gr.Column(scale=2):
num = gr.Textbox()
with gr.Row():
all_btn = gr.Button("Load")
find_btn = gr.Button("Find")
with gr.Row():
rawp = gr.JSON()
outp = gr.JSON()
outl = gr.Textbox()
all_btn.click(find_all,[inp,q,num],[rawp])
find_btn.click(find_it,[inp,q,num],[outp,outl])
app.launch()
''' |