IVGSZ commited on
Commit
3903944
·
verified ·
1 Parent(s): 6274907

Delete demo.py

Browse files
Files changed (1) hide show
  1. demo.py +0 -141
demo.py DELETED
@@ -1,141 +0,0 @@
1
- import torch
2
- from ..constants import *
3
- from ..conversation import conv_templates, SeparatorStyle
4
- from ..model.builder import load_pretrained_model
5
- from ..utils import disable_torch_init
6
- from ..mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_model_name_from_path
7
- from PIL import Image
8
- import os
9
- from decord import VideoReader, cpu
10
- import numpy as np
11
-
12
-
13
- class Chat:
14
- def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False):
15
- disable_torch_init()
16
- model_name = get_model_name_from_path(model_path)
17
- self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit=load_8bit, load_4bit=load_4bit)
18
-
19
- mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False)
20
- mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True)
21
- if mm_use_im_patch_token:
22
- self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
23
- if mm_use_im_start_end:
24
- self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
25
- self.model.resize_token_embeddings(len(self.tokenizer))
26
-
27
- vision_tower = self.model.get_vision_tower()
28
- if not vision_tower.is_loaded:
29
- vision_tower.load_model()
30
-
31
- self.image_processor = vision_tower.image_processor
32
- self.conv_mode = conv_mode
33
- print(self.model)
34
-
35
- def get_prompt(self, qs, state):
36
- state.append_message(state.roles[0], qs)
37
- state.append_message(state.roles[1], None)
38
- return state
39
-
40
- def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224,
41
- video_framerate=1, s=None, e=None):
42
- if s is None:
43
- start_time, end_time = None, None
44
- else:
45
- start_time = int(s)
46
- end_time = int(e)
47
- start_time = start_time if start_time >= 0. else 0.
48
- end_time = end_time if end_time >= 0. else 0.
49
- if start_time > end_time:
50
- start_time, end_time = end_time, start_time
51
- elif start_time == end_time:
52
- end_time = start_time + 1
53
-
54
- if os.path.exists(video_path):
55
- vreader = VideoReader(video_path, ctx=cpu(0))
56
- else:
57
- print(video_path)
58
- raise FileNotFoundError
59
-
60
- fps = vreader.get_avg_fps()
61
- f_start = 0 if start_time is None else int(start_time * fps)
62
- f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
63
- num_frames = f_end - f_start + 1
64
- if num_frames > 0:
65
- sample_fps = int(video_framerate)
66
- t_stride = int(round(float(fps) / sample_fps))
67
-
68
- all_pos = list(range(f_start, f_end + 1, t_stride))
69
- if len(all_pos) > max_frames:
70
- sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
71
- else:
72
- sample_pos = all_pos
73
-
74
- patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
75
- return patch_images
76
-
77
- @torch.inference_mode()
78
- def generate(self, images_tensor: list, prompt: str, first_run: bool, state):
79
- tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
80
-
81
- state = self.get_prompt(prompt, state)
82
- prompt = state.get_prompt()
83
- print(prompt)
84
-
85
- images_tensor = torch.stack(images_tensor, dim=0)
86
- input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
87
-
88
- temperature = 0.2
89
- max_new_tokens = 1024
90
-
91
- stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \
92
- conv_templates[self.conv_mode].copy().sep2
93
- keywords = [stop_str]
94
- stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
95
-
96
- with torch.inference_mode():
97
- output_ids = model.generate(
98
- input_ids,
99
- images=images_tensor,
100
- do_sample=True,
101
- temperature=temperature,
102
- num_beams=1,
103
- max_new_tokens=max_new_tokens,
104
- use_cache=True,
105
- stopping_criteria=[stopping_criteria])
106
-
107
- input_token_len = input_ids.shape[1]
108
- n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
109
- if n_diff_input_output > 0:
110
- print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
111
- outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
112
- outputs = outputs.strip()
113
- if outputs.endswith(stop_str):
114
- outputs = outputs[:-len(stop_str)]
115
- outputs = outputs.strip()
116
-
117
- print('response', outputs)
118
- return outputs, state
119
-
120
-
121
-
122
- title_markdown = ("""
123
- <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
124
- <div>
125
- <h1 >Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams</h1>
126
- </div>
127
- </div>
128
- <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
129
- <div style="display:flex; gap: 0.25rem;" align="center">
130
- <a href="https://invinciblewyq.github.io/vstream-page/"><img src='https://img.shields.io/badge/Project-Page-Green'></a>
131
- <a href="https://arxiv.org/abs/2406.08085v1"><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
132
- <a href='https://github.com/IVGSZ/Flash-VStream'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
133
- </div>
134
- </div>
135
- """)
136
-
137
- block_css = """
138
- #buttons button {
139
- min-width: min(120px,100%);
140
- }
141
- """