import gradio as gr import requests import io import random import os from PIL import Image from deep_translator import GoogleTranslator from langdetect import detect API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" API_TOKEN = os.getenv("HF_READ_TOKEN") # it is free headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(prompt, model, is_negative=False, steps=20, cfg_scale=7, seed=None): language = detect(prompt) if language == 'ru': prompt = GoogleTranslator(source='ru', target='en').translate(prompt) print(f'\033[1mГенерация:\033[0m {prompt}') if model == 'DALL-E 3 XL': API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" if model == 'Playground v2': API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic" if model == 'SD-XL 1.0': API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" if model == 'PixArt': API_URL = "https://api-inference.huggingface.co/models/PixArt-alpha/PixArt-LCM-XL-2-1024-MS" payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } image_bytes = requests.post(API_URL, headers=headers, json=payload).content image = Image.open(io.BytesIO(image_bytes)) return image css = """ footer {visibility: hidden !important;} """ with gr.Blocks(css=css) as dalle: with gr.Tab("Базовые настройки"): with gr.Row(): with gr.Column(elem_id="prompt-container"): text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input") model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=["DALL-E 3 XL", "Playground v2", "SD-XL 1.0", "PixArt"]) with gr.Tab("Расширенные настройки"): negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input") with gr.Row(): text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button") with gr.Row(): image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery") text_button.click(query, inputs=[text_prompt, model, negative_prompt], outputs=image_output) dalle.launch(show_api=False)