Spaces:
Running
Running
import os | |
import io | |
from IPython.display import Image | |
from PIL import Image | |
import base64 | |
import gradio as gr | |
from dotenv import load_dotenv, find_dotenv | |
_ = load_dotenv(find_dotenv()) # read local .env file | |
hf_api_key = os.environ['HF_API_KEY'] | |
#### Helper function | |
import requests, json | |
#Here we are going to call multiple endpoints! | |
def get_completion(inputs, parameters=None, ENDPOINT_URL=""): | |
headers = { | |
"Authorization": f"Bearer {hf_api_key}", | |
"Content-Type": "application/json" | |
} | |
data = { "inputs": inputs } | |
if parameters is not None: | |
data.update({"parameters": parameters}) | |
response = requests.request("POST", | |
ENDPOINT_URL, | |
headers=headers, | |
data=json.dumps(data)) | |
return json.loads(response.content.decode("utf-8")) | |
#Here we are going to call multiple endpoints! | |
def image_completion(inputs, parameters=None, ENDPOINT_URL=""): | |
headers = { | |
"Authorization": f"Bearer {hf_api_key}", | |
"Content-Type": "application/json" | |
} | |
data = { "inputs": inputs } | |
if parameters is not None: | |
data.update({"parameters": parameters}) | |
response = requests.request("POST", | |
ENDPOINT_URL, | |
headers=headers, | |
data=json.dumps(data)) | |
return response.content | |
#text-to-image | |
TTI_ENDPOINT ="https://api-inference.huggingface.co/models/cloudqi/cqi_text_to_image_pt_v0" | |
#image-to-text | |
ITT_ENDPOINT = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base" | |
#Bringing the functions from lessons 3 and 4! | |
def image_to_base64_str(pil_image): | |
byte_arr = io.BytesIO() | |
pil_image.save(byte_arr, format='PNG') | |
byte_arr = byte_arr.getvalue() | |
return str(base64.b64encode(byte_arr).decode('utf-8')) | |
def base64_to_pil(img_base64): | |
base64_decoded = base64.b64decode(img_base64) | |
byte_stream = io.BytesIO(base64_decoded) | |
pil_image = Image.open(byte_stream) | |
return pil_image | |
def captioner(image): | |
base64_image = image_to_base64_str(image) | |
result = get_completion(base64_image, None, ITT_ENDPOINT) | |
return result[0]['generated_text'] | |
def generate(prompt): | |
output = image_completion(prompt, None, TTI_ENDPOINT) | |
result_image = Image.open(io.BytesIO(output)) | |
print(result_image) | |
return result_image | |
def caption_and_generate(image): | |
caption = captioner(image) | |
image = generate(caption) | |
return [caption, image] | |
def loadGUI(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Describe-and-Generate game 🖍️") | |
image_upload = gr.Image(label="Your first image",type="pil") | |
btn_all = gr.Button("Caption and generate") | |
caption = gr.Textbox(label="Generated caption") | |
image_output = gr.Image(label="Generated Image") | |
btn_all.click(fn=caption_and_generate, inputs=[image_upload], outputs=[caption, image_output]) | |
gr.close_all() | |
demo.launch(share=True) | |
def main(): | |
loadGUI() | |
if __name__ == "__main__": | |
main() | |