File size: 1,675 Bytes
dbac20f c4dd2de dbac20f c4dd2de dbac20f c4dd2de dbac20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import torch
import torch.nn as nn
# https://github.com/facebookresearch/DiT
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, dim, frequency_embedding_size, max_period):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, dim),
nn.SiLU(),
nn.Linear(dim, dim),
)
self.dim = dim
self.max_period = max_period
assert dim % 2 == 0, 'dim must be even.'
with torch.autocast('cuda', enabled=False):
self.freqs = (
1.0 / (10000**(torch.arange(0, frequency_embedding_size, 2, dtype=torch.float32) /
frequency_embedding_size)))
freq_scale = 10000 / max_period
self.freqs = nn.Parameter(freq_scale * self.freqs)
def timestep_embedding(self, t):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
args = t[:, None].float() * self.freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t).to(t.dtype)
t_emb = self.mlp(t_freq)
return t_emb
|