File size: 8,409 Bytes
3cf27bd
 
 
 
 
 
 
33d554a
 
571f7e3
3cf27bd
33d554a
 
 
 
 
 
 
 
 
3cf27bd
33d554a
 
 
 
3cf27bd
 
33d554a
 
 
 
 
3cf27bd
 
 
33d554a
 
 
571f7e3
 
33d554a
571f7e3
 
33d554a
 
 
571f7e3
33d554a
 
571f7e3
33d554a
571f7e3
 
 
33d554a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571f7e3
33d554a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca58a74
33d554a
571f7e3
ca58a74
 
 
33d554a
 
ca58a74
 
 
33d554a
 
 
3cf27bd
33d554a
3cf27bd
33d554a
 
 
 
 
571f7e3
 
33d554a
 
 
571f7e3
 
33d554a
 
 
 
 
571f7e3
33d554a
 
 
571f7e3
 
 
33d554a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571f7e3
 
33d554a
3cf27bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
import markdown
from markdown.extensions.tables import TableExtension
from markdown.extensions.fenced_code import FencedCodeExtension
from markdown.extensions.toc import TocExtension
from markdown.extensions.attr_list import AttrListExtension
from markdown.extensions.codehilite import CodeHiliteExtension

# For ReaderLM-2
from transformers import pipeline

# For ReaderLM-1
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces
import re
from markdownify import markdownify

######################################
# 1) MARKDOWN-STUDIO FUNCTIONALITY   #
######################################
def render_markdown(md_text):
    """
    Render a string of Markdown text into HTML with a number of useful extensions.
    """
    return markdown.markdown(
        md_text,
        extensions=[
            TableExtension(),
            FencedCodeExtension(),
            TocExtension(baselevel=2),
            AttrListExtension(),
            CodeHiliteExtension(linenums=False, css_class="highlight"),
        ],
    )

######################################
# 2) READERLM-2 FUNCTIONALITY        #
######################################
# Load the JinaAI ReaderLM-v2 model
model_name = "jinaai/ReaderLM-v2"
html_converter = pipeline("text-generation", model=model_name)

def convert_html(html_input, output_format):
    """
    Use the JinaAI ReaderLM-v2 pipeline to convert HTML into Markdown or JSON.
    """
    prompt = f"Convert the following HTML into {output_format}:\n\n{html_input}"
    response = html_converter(prompt, max_length=500, num_return_sequences=1)
    converted_output = response[0]['generated_text']
    
    # Remove the prompt from the start of the generated text, if present
    converted_output = converted_output.replace(prompt, "").strip()
    return converted_output

######################################
# 3) READERLM-1 FUNCTIONALITY        #
######################################
# Prepare models and tokenizers
models = {
    "jinaai/reader-lm-0.5b": AutoModelForCausalLM.from_pretrained(
        "jinaai/reader-lm-0.5b", trust_remote_code=True
    ).eval().to("cuda"),
    "jinaai/reader-lm-1.5b": AutoModelForCausalLM.from_pretrained(
        "jinaai/reader-lm-1.5b", trust_remote_code=True
    ).eval().to("cuda"),
}
tokenizers = {
    "jinaai/reader-lm-0.5b": AutoTokenizer.from_pretrained(
        "jinaai/reader-lm-0.5b", trust_remote_code=True
    ),
    "jinaai/reader-lm-1.5b": AutoTokenizer.from_pretrained(
        "jinaai/reader-lm-1.5b", trust_remote_code=True
    ),
}

@spaces.GPU
def run_example(html_content, model_id="jinaai/reader-lm-1.5b"):
    """
    Use ReaderLM (0.5b or 1.5b) to generate model-based HTML-to-Markdown text,
    then also provide a rule-based 'markdownify' output.
    """
    model = models[model_id]
    tokenizer = tokenizers[model_id]

    # Construct the chat-based input
    messages = [{"role": "user", "content": html_content}]
    input_text = tokenizer.apply_chat_template(messages, tokenize=False)

    # Tokenize
    inputs = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
    
    # Generate
    outputs = model.generate(
        inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08
    )

    # Extract the model's text from the response
    pattern = r"<\|im_start\|>assistant(.*?)<\|im_end\|>"
    assistant_response = re.findall(pattern, tokenizer.decode(outputs[0]), re.DOTALL)

    # Also do a rule-based markdownify for comparison
    markdownify_output = markdownify(html_content)

    # Return the two results (model-based, rule-based)
    return assistant_response[0], markdownify_output

# Example HTML from ReaderLM-1
example_html = """<div id="myDIV" class="header">
  <h2>My To Do List</h2>
  <input type="text" id="myInput" placeholder="Title...">
  <span onclick="newElement()" class="addBtn">Add</span>
</div>

<ul id="myUL">
  <li>Hit the gym</li>
  <li class="checked">Pay bills</li>
  <li>Meet George</li>
  <li>Buy eggs</li>
  <li>Read a book</li>
  <li>Organize office</li>
</ul>"""

########################################################
# Combine everything into a single Gradio Blocks app   #
########################################################

# Optional extra CSS for the ReaderLM-1 tab
css = """
#output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
}
"""

# We use the Nymbo/Nymbo_Theme from the original Markdown-Studio example
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:

    ########################################################
    # TAB 1: Markdown Suite (live preview)
    ########################################################
    with gr.Tab("Live Preview"):
        gr.Markdown("# Markdown Suite")

        with gr.Row():
            with gr.Column():
                md_input = gr.Textbox(
                    lines=20,
                    placeholder="Write your markdown here...",
                    label="Markdown Input",
                )
            with gr.Column():
                md_output = gr.HTML(
                    label="Rendered Output"
                )

        md_input.change(fn=render_markdown, inputs=md_input, outputs=md_output)

    ########################################################
    # TAB 2: ReaderLM-2 Converter (HTML → Markdown/JSON)
    ########################################################
    with gr.Tab("ReaderLM-2 Converter"):
        gr.Markdown("## HTML to Markdown/JSON Converter (ReaderLM-v2)")

        with gr.Row():
            html_input_2 = gr.Textbox(
                lines=10,
                placeholder="Paste your raw HTML here...",
                label="Raw HTML Input"
            )
            output_format_2 = gr.Radio(
                ["Markdown", "JSON"],
                label="Output Format",
                value="Markdown"
            )

        convert_btn_2 = gr.Button("Convert")
        converted_output_2 = gr.Textbox(
            lines=10,
            label="Converted Output"
        )

        # Provide usage details
        gr.Markdown(
            "Convert raw HTML into formatted Markdown or JSON using **JinaAI ReaderLM-v2**."
        )

        # Button event: calls convert_html
        convert_btn_2.click(
            fn=convert_html,
            inputs=[html_input_2, output_format_2],
            outputs=converted_output_2
        )

        # Examples
        gr.Examples(
            examples=[
                ["<h1>Hello World</h1><p>This is a <strong>test</strong>.</p>", "Markdown"],
                ["<ul><li>Item 1</li><li>Item 2</li></ul>", "JSON"]
            ],
            inputs=[html_input_2, output_format_2],
            outputs=converted_output_2,
            fn=convert_html,
            cache_examples=False
        )

    ########################################################
    # TAB 3: ReaderLM-1 HTML-to-Markdown
    ########################################################
    with gr.Tab("ReaderLM-1 Converter"):
        gr.Markdown("""
        # HTML-to-Markdown with ReaderLM-1
        Use either **jinaai/reader-lm-0.5b** or **jinaai/reader-lm-1.5b** 
        to convert HTML to Markdown. Compare against rule-based `markdownify`.
        """)

        with gr.Row():
            with gr.Column():
                model_selector = gr.Dropdown(
                    choices=list(models.keys()),
                    label="Model",
                    value="jinaai/reader-lm-1.5b"
                )
                html_content = gr.Textbox(
                    label="HTML"
                )
                submit_btn = gr.Button(value="Submit")

            with gr.Column():
                model_output_text = gr.Textbox(label="Reader LM Output")
                markdownify_output = gr.Textbox(label="Markdownify Output")

        # Example usage
        gr.Examples(
            examples=[
                [example_html],
            ],
            inputs=[html_content],
            outputs=[model_output_text, markdownify_output],
            fn=run_example,
            cache_examples=True,
            label="Try example HTML"
        )

        # Button event for custom input
        submit_btn.click(
            fn=run_example,
            inputs=[html_content, model_selector],
            outputs=[model_output_text, markdownify_output]
        )

# Finally, launch the combined demo
demo.launch()