File size: 4,158 Bytes
d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 b4ef37a d6da1d1 aaecba9 d6da1d1 aaecba9 c3b82a5 aaecba9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
def generate_txt2img(prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None):
API_URL = "https://api-inference.huggingface.co/models/MysteriousAI/NSFW-gen"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
base_payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
if image_style == "Cinematic":
base_payload["inputs"] += ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko"
base_payload["is_negative"] += ", abstract, cartoon, stylized"
elif image_style == "Digital Art":
base_payload["inputs"] += ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star"
base_payload["is_negative"] += ", sharp , modern , bright"
elif image_style == "Portrait":
base_payload["inputs"] += ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)"
image_bytes = requests.post(API_URL, headers=headers, json=base_payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
css = """
/* General Container Styles */
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 730px !important;
margin: auto;
padding-top: 1.5rem;
text-align: center;
}
/* Button Styles */
.gr-button {
color: white;
background: #007bff;
white-space: nowrap;
border: none;
padding: 10px 20px;
border-radius: 8px;
cursor: pointer;
transition: background-color 0.3s, color 0.3s;
}
.gr-button:hover {
background-color: #0056b3;
}
/* Share Button Styles */
#share-btn-container {
padding: 0.5rem !important;
background-color: #007bff;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 13rem;
margin: 0 auto;
transition: background-color 0.3s;
}
#share-btn-container:hover {
background-color: #0056b3;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin: 0.5rem !important;
padding: 0.5rem !important;
}
/* Other Styles */
#gallery {
min-height: 22rem;
margin: auto;
border-bottom-right-radius: 0.5rem !important;
border-bottom-left-radius: 0.5rem !important;
}
.image-container {
max-width: 100%;
margin: auto;
padding: 20px;
border: 1px solid #ccc;
border-radius: 10px;
overflow: hidden;
max-height: 22rem;
}
.image-container img {
max-width: 100%;
height: auto;
max-height: 100%;
border-radius: 10px;
box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.2);
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.Markdown("<h1>NSFW-GEN</h1>")
text_prompt = gr.Textbox(label="Enter Prompt", placeholder="Example: a cute dog", lines=2)
generate_button = gr.Button("Generate Image", variant='primary')
with gr.Column():
gr.Markdown("<h4>Advanced Settings</h4>")
with gr.Accordion("Advanced Customizations", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt (Optional)", placeholder="Example: blurry, unfocused", lines=2)
image_style = gr.Dropdown(label="Select Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style")
with gr.Row():
image_output = gr.Image(type="pil", label="Output Image")
generate_button.click(generate_txt2img, inputs=[text_prompt, negative_prompt, image_style], outputs=image_output)
demo.launch()
|