node_lines: - node_line_name: retrieve_node_line # Arbitrary node line name nodes: - node_type: retrieval strategy: metrics: [ retrieval_f1, retrieval_recall, retrieval_precision, retrieval_ndcg, retrieval_map, retrieval_mrr ] speed_threshold: 10 top_k: 10 modules: - module_type: bm25 bm25_tokenizer: [ porter_stemmer, space, gpt2 ] - module_type: vectordb embedding_model: openai embedding_batch: 256 - module_type: hybrid_rrf weight_range: (4,80) - module_type: hybrid_cc normalize_method: [ mm, tmm, z, dbsf ] weight_range: (0.0, 1.0) test_weight_size: 101 - node_type: passage_augmenter strategy: metrics: [ retrieval_f1, retrieval_recall, retrieval_precision ] speed_threshold: 5 top_k: 5 embedding_model: openai modules: - module_type: pass_passage_augmenter - module_type: prev_next_augmenter mode: next - node_type: passage_reranker strategy: metrics: [ retrieval_f1, retrieval_recall, retrieval_precision ] speed_threshold: 10 top_k: 5 modules: - module_type: pass_reranker - module_type: tart - module_type: monot5 - module_type: upr - module_type: rankgpt - module_type: colbert_reranker - module_type: sentence_transformer_reranker - module_type: flag_embedding_reranker - module_type: flag_embedding_llm_reranker - module_type: openvino_reranker - node_type: passage_filter strategy: metrics: [ retrieval_f1, retrieval_recall, retrieval_precision ] speed_threshold: 5 modules: - module_type: pass_passage_filter - module_type: similarity_threshold_cutoff threshold: 0.85 - module_type: similarity_percentile_cutoff percentile: 0.6 - module_type: threshold_cutoff threshold: 0.85 - module_type: percentile_cutoff percentile: 0.6 - node_type: passage_compressor strategy: metrics: [retrieval_token_f1, retrieval_token_recall, retrieval_token_precision] speed_threshold: 10 modules: - module_type: pass_compressor - module_type: tree_summarize llm: openai model: gpt-4o-mini - module_type: refine llm: openai model: gpt-4o-mini - module_type: longllmlingua - node_line_name: post_retrieve_node_line # Arbitrary node line name nodes: - node_type: prompt_maker strategy: metrics: - metric_name: bleu - metric_name: meteor - metric_name: rouge - metric_name: sem_score embedding_model: openai speed_threshold: 10 generator_modules: - module_type: llama_index_llm llm: openai model: [gpt-4o-mini] modules: - module_type: fstring prompt: ["Tell me something about the question: {query} \n\n {retrieved_contents}", "Question: {query} \n Something to read: {retrieved_contents} \n What's your answer?"] - module_type: long_context_reorder prompt: [ "Tell me something about the question: {query} \n\n {retrieved_contents}", "Question: {query} \n Something to read: {retrieved_contents} \n What's your answer?" ] - node_type: generator strategy: metrics: - metric_name: bleu - metric_name: meteor - metric_name: rouge - metric_name: sem_score embedding_model: openai speed_threshold: 10 modules: - module_type: llama_index_llm llm: [openai] model: [gpt-4o-mini] temperature: [0.5, 1.0]