Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,41 +6,24 @@ import base64
|
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
|
9 |
-
# Import smolagents
|
10 |
-
from smolagents import
|
11 |
-
from smolagents.models import InferenceClientModel as SmolInferenceClientModel # Alias to avoid conflict
|
12 |
|
13 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
14 |
print("Access token loaded.")
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
try:
|
19 |
image_generation_tool = Tool.from_space(
|
20 |
-
"black-forest-labs/FLUX.1-schnell",
|
21 |
name="image_generator",
|
22 |
-
description="Generates an image from a
|
23 |
-
# Ensure the HF_TOKEN is available to gradio-client if the space is private or requires auth
|
24 |
-
token=ACCESS_TOKEN if ACCESS_TOKEN and ACCESS_TOKEN.strip() != "" else None
|
25 |
)
|
26 |
print("Image generation tool loaded successfully.")
|
27 |
-
|
28 |
-
# Initialize a model for the CodeAgent. This can be a simpler/faster model
|
29 |
-
# as it's mainly for orchestrating the tool call.
|
30 |
-
# Using a default InferenceClientModel from smolagents
|
31 |
-
smol_agent_model = SmolInferenceClientModel(token=ACCESS_TOKEN if ACCESS_TOKEN and ACCESS_TOKEN.strip() != "" else None)
|
32 |
-
print(f"Smolagent model initialized with: {smol_agent_model.model_id if hasattr(smol_agent_model, 'model_id') else 'default'}")
|
33 |
-
|
34 |
-
image_agent = CodeAgent(
|
35 |
-
tools=[image_generation_tool],
|
36 |
-
model=smol_agent_model,
|
37 |
-
verbosity_level=1 # Set to 0 for less verbose agent logging, 1 for info, 2 for debug
|
38 |
-
)
|
39 |
-
print("Image generation agent initialized successfully.")
|
40 |
except Exception as e:
|
41 |
-
print(f"Error
|
42 |
-
|
43 |
-
# --- End Smolagents Setup ---
|
44 |
|
45 |
# Function to encode image to base64
|
46 |
def encode_image(image_path):
|
@@ -64,7 +47,7 @@ def encode_image(image_path):
|
|
64 |
|
65 |
# Encode to base64
|
66 |
buffered = io.BytesIO()
|
67 |
-
image.save(buffered, format="JPEG")
|
68 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
69 |
print("Image encoded successfully")
|
70 |
return img_str
|
@@ -73,9 +56,9 @@ def encode_image(image_path):
|
|
73 |
return None
|
74 |
|
75 |
def respond(
|
76 |
-
message
|
77 |
-
image_files, #
|
78 |
-
history: list[
|
79 |
system_message,
|
80 |
max_tokens,
|
81 |
temperature,
|
@@ -88,9 +71,9 @@ def respond(
|
|
88 |
model_search_term,
|
89 |
selected_model
|
90 |
):
|
91 |
-
print(f"Received message: {
|
92 |
-
print(f"Received {len(image_files) if image_files else 0}
|
93 |
-
print(f"History: {history}")
|
94 |
print(f"System message: {system_message}")
|
95 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
96 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
@@ -100,136 +83,106 @@ def respond(
|
|
100 |
print(f"Model search term: {model_search_term}")
|
101 |
print(f"Selected model from radio: {selected_model}")
|
102 |
|
103 |
-
#
|
104 |
-
if
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
return
|
113 |
|
114 |
-
print(f"Image generation requested with prompt: {prompt_for_agent}")
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
if isinstance(agent_response, str) and agent_response.lower().startswith("error"):
|
121 |
-
yield f"Agent error: {agent_response}"
|
122 |
-
elif hasattr(agent_response, 'to_string'): # Check if it's an AgentImage or similar
|
123 |
-
image_path = agent_response.to_string() # This is a local path to the generated image
|
124 |
-
print(f"Agent returned image path: {image_path}")
|
125 |
-
# Gradio's chatbot can display images if the content is a file path string
|
126 |
-
# or a tuple (filepath, alt_text)
|
127 |
-
yield image_path
|
128 |
-
else:
|
129 |
-
yield f"Agent returned an unexpected response: {str(agent_response)}"
|
130 |
return
|
131 |
except Exception as e:
|
132 |
-
print(f"Error
|
133 |
-
yield f"
|
134 |
return
|
135 |
-
|
|
|
|
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
if custom_api_key.strip() != "":
|
141 |
-
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
142 |
-
else:
|
143 |
-
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
144 |
-
|
145 |
-
# Initialize the Inference Client with the provider and appropriate token
|
146 |
client = InferenceClient(token=token_to_use, provider=provider)
|
147 |
-
print(f"Hugging Face Inference Client initialized with {provider} provider
|
148 |
|
149 |
-
# Convert seed to None if -1 (meaning random)
|
150 |
if seed == -1:
|
151 |
seed = None
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
for img_path in image_files: # Assuming image_files contains paths from MultimodalTextbox
|
162 |
-
if img_path is not None:
|
163 |
try:
|
164 |
-
encoded_image = encode_image(img_path) # img_path is already a path
|
165 |
if encoded_image:
|
166 |
-
|
167 |
"type": "image_url",
|
168 |
-
"image_url": {
|
169 |
-
"url": f"data:image/jpeg;base64,{encoded_image}"
|
170 |
-
}
|
171 |
})
|
172 |
except Exception as e:
|
173 |
-
print(f"Error encoding image: {e}")
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
177 |
|
178 |
-
|
179 |
-
messages
|
180 |
-
print("Initial messages array constructed.")
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
if isinstance(user_part, str) and user_part.startswith(":
|
190 |
-
# This is an image path from a previous agent generation
|
191 |
-
# or a user upload represented as markdown
|
192 |
-
history_image_path = user_part.replace(".replace(")", "")
|
193 |
-
encoded_history_image = encode_image(history_image_path)
|
194 |
-
if encoded_history_image:
|
195 |
-
messages.append({"role": "user", "content": [{
|
196 |
-
"type": "image_url",
|
197 |
-
"image_url": {"url": f"data:image/jpeg;base64,{encoded_history_image}"}
|
198 |
-
}]})
|
199 |
-
elif isinstance(user_part, tuple) and len(user_part) == 2: # Multimodal input from user
|
200 |
-
history_content_list = []
|
201 |
-
if user_part[0]: # Text part
|
202 |
-
history_content_list.append({"type": "text", "text": user_part[0]})
|
203 |
-
for img_hist_path in user_part[1]: # List of image paths
|
204 |
-
encoded_img_hist = encode_image(img_hist_path)
|
205 |
-
if encoded_img_hist:
|
206 |
-
history_content_list.append({
|
207 |
-
"type": "image_url",
|
208 |
-
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img_hist}"}
|
209 |
-
})
|
210 |
-
if history_content_list:
|
211 |
-
messages.append({"role": "user", "content": history_content_list})
|
212 |
-
else: # Regular text message
|
213 |
-
messages.append({"role": "user", "content": user_part})
|
214 |
-
print(f"Added user message to context (type: {type(user_part)})")
|
215 |
|
216 |
-
if
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
print(f"Latest user message appended (content type: {type(user_content)})")
|
223 |
|
224 |
-
# Determine which model to use, prioritizing custom_model if provided
|
225 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
226 |
-
print(f"Model selected for inference: {model_to_use}")
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
print(f"Sending request to {provider} provider.")
|
231 |
|
232 |
-
# Prepare parameters for the chat completion request
|
233 |
parameters = {
|
234 |
"max_tokens": max_tokens,
|
235 |
"temperature": temperature,
|
@@ -240,58 +193,50 @@ def respond(
|
|
240 |
if seed is not None:
|
241 |
parameters["seed"] = seed
|
242 |
|
243 |
-
# Use the InferenceClient for making the request
|
244 |
try:
|
245 |
-
# Create a generator for the streaming response
|
246 |
stream = client.chat_completion(
|
247 |
model=model_to_use,
|
248 |
-
messages=
|
249 |
stream=True,
|
250 |
**parameters
|
251 |
)
|
252 |
|
253 |
-
print("Received tokens: ", end="", flush=True)
|
254 |
|
255 |
-
# Process the streaming response
|
256 |
for chunk in stream:
|
257 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
258 |
-
# Extract the content from the response
|
259 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
260 |
token_text = chunk.choices[0].delta.content
|
261 |
if token_text:
|
262 |
print(token_text, end="", flush=True)
|
263 |
-
|
264 |
-
yield
|
265 |
|
266 |
print()
|
267 |
except Exception as e:
|
268 |
-
print(f"Error during inference: {e}")
|
269 |
-
|
270 |
-
yield
|
271 |
|
272 |
-
print("Completed response generation.")
|
273 |
|
274 |
-
# Function to validate provider selection based on BYOK
|
275 |
def validate_provider(api_key, provider):
|
276 |
if not api_key.strip() and provider != "hf-inference":
|
277 |
return gr.update(value="hf-inference")
|
278 |
return gr.update(value=provider)
|
279 |
|
280 |
-
# GRADIO UI
|
281 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
282 |
-
# Create the chatbot component
|
283 |
chatbot = gr.Chatbot(
|
284 |
height=600,
|
285 |
show_copy_button=True,
|
286 |
-
placeholder="Select a model and begin chatting.
|
287 |
layout="panel",
|
288 |
-
|
289 |
)
|
290 |
print("Chatbot interface created.")
|
291 |
|
292 |
-
# Multimodal textbox for messages (combines text and file uploads)
|
293 |
msg = gr.MultimodalTextbox(
|
294 |
-
placeholder="Type a message or upload images...
|
295 |
show_label=False,
|
296 |
container=False,
|
297 |
scale=12,
|
@@ -300,226 +245,138 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
300 |
sources=["upload"]
|
301 |
)
|
302 |
|
303 |
-
# Create accordion for settings
|
304 |
with gr.Accordion("Settings", open=False):
|
305 |
-
# System message
|
306 |
system_message_box = gr.Textbox(
|
307 |
-
value="You are a helpful AI assistant that can understand images and text. If asked to generate an image,
|
308 |
placeholder="You are a helpful assistant.",
|
309 |
label="System Prompt"
|
310 |
)
|
311 |
|
312 |
-
# Generation parameters
|
313 |
with gr.Row():
|
314 |
with gr.Column():
|
315 |
-
max_tokens_slider = gr.Slider(
|
316 |
-
|
317 |
-
|
318 |
-
value=512,
|
319 |
-
step=1,
|
320 |
-
label="Max tokens"
|
321 |
-
)
|
322 |
-
|
323 |
-
temperature_slider = gr.Slider(
|
324 |
-
minimum=0.1,
|
325 |
-
maximum=4.0,
|
326 |
-
value=0.7,
|
327 |
-
step=0.1,
|
328 |
-
label="Temperature"
|
329 |
-
)
|
330 |
-
|
331 |
-
top_p_slider = gr.Slider(
|
332 |
-
minimum=0.1,
|
333 |
-
maximum=1.0,
|
334 |
-
value=0.95,
|
335 |
-
step=0.05,
|
336 |
-
label="Top-P"
|
337 |
-
)
|
338 |
-
|
339 |
with gr.Column():
|
340 |
-
frequency_penalty_slider = gr.Slider(
|
341 |
-
|
342 |
-
maximum=2.0,
|
343 |
-
value=0.0,
|
344 |
-
step=0.1,
|
345 |
-
label="Frequency Penalty"
|
346 |
-
)
|
347 |
-
|
348 |
-
seed_slider = gr.Slider(
|
349 |
-
minimum=-1,
|
350 |
-
maximum=65535,
|
351 |
-
value=-1,
|
352 |
-
step=1,
|
353 |
-
label="Seed (-1 for random)"
|
354 |
-
)
|
355 |
|
356 |
-
|
357 |
-
providers_list =
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
"sambanova", # SambaNova
|
362 |
-
"novita", # Novita AI
|
363 |
-
"cohere", # Cohere
|
364 |
-
"fireworks-ai", # Fireworks AI
|
365 |
-
"hyperbolic", # Hyperbolic
|
366 |
-
"nebius", # Nebius
|
367 |
-
]
|
368 |
-
|
369 |
-
provider_radio = gr.Radio(
|
370 |
-
choices=providers_list,
|
371 |
-
value="hf-inference",
|
372 |
-
label="Inference Provider",
|
373 |
-
)
|
374 |
-
|
375 |
-
# New BYOK textbox
|
376 |
-
byok_textbox = gr.Textbox(
|
377 |
-
value="",
|
378 |
-
label="BYOK (Bring Your Own Key)",
|
379 |
-
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
380 |
-
placeholder="Enter your Hugging Face API token",
|
381 |
-
type="password" # Hide the API key for security
|
382 |
-
)
|
383 |
-
|
384 |
-
# Custom model box
|
385 |
-
custom_model_box = gr.Textbox(
|
386 |
-
value="",
|
387 |
-
label="Custom Model",
|
388 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
389 |
-
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
390 |
-
)
|
391 |
|
392 |
-
# Model search
|
393 |
-
model_search_box = gr.Textbox(
|
394 |
-
label="Filter Models",
|
395 |
-
placeholder="Search for a featured model...",
|
396 |
-
lines=1
|
397 |
-
)
|
398 |
-
|
399 |
-
# Featured models list
|
400 |
-
# Updated to include multimodal models
|
401 |
models_list = [
|
402 |
-
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
403 |
-
"meta-llama/Llama-3.
|
404 |
-
"meta-llama/Llama-3.1-
|
405 |
-
"
|
406 |
-
"
|
407 |
-
"
|
408 |
-
"
|
409 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
410 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
411 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
412 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
413 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
414 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
415 |
-
"Qwen/Qwen3-235B-A22B",
|
416 |
-
"Qwen/Qwen3-32B",
|
417 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
418 |
-
"Qwen/Qwen2.5-3B-Instruct",
|
419 |
-
"Qwen/Qwen2.5-0.5B-Instruct",
|
420 |
-
"Qwen/QwQ-32B",
|
421 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
422 |
-
"microsoft/Phi-3.5-mini-instruct",
|
423 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
424 |
-
"microsoft/Phi-3-mini-4k-instruct",
|
425 |
]
|
426 |
-
|
427 |
-
featured_model_radio = gr.Radio(
|
428 |
-
label="Select a model below",
|
429 |
-
choices=models_list,
|
430 |
-
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
|
431 |
-
interactive=True
|
432 |
-
)
|
433 |
|
434 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
435 |
|
436 |
-
# Chat history state
|
437 |
chat_history = gr.State([])
|
438 |
|
439 |
-
# Function to filter models
|
440 |
def filter_models(search_term):
|
441 |
print(f"Filtering models with search term: {search_term}")
|
442 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
443 |
print(f"Filtered models: {filtered}")
|
444 |
-
return gr.update(choices=filtered
|
445 |
|
446 |
-
|
447 |
-
# Function to set custom model from radio
|
448 |
def set_custom_model_from_radio(selected):
|
449 |
print(f"Featured model selected: {selected}")
|
450 |
return selected
|
451 |
|
452 |
-
|
453 |
-
|
454 |
-
print(f"User message object received: {user_message_obj}")
|
455 |
-
|
456 |
-
text_content = user_message_obj.get("text", "").strip()
|
457 |
-
files = user_message_obj.get("files", []) # files is a list of temp file paths
|
458 |
|
459 |
-
|
460 |
-
|
461 |
-
return history # Or raise gr.Error("Please enter a message or upload an image.")
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
if text_content:
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
-
processed_files_for_history = []
|
470 |
-
if files:
|
471 |
-
for file_path_obj in files:
|
472 |
-
# Gradio's MultimodalTextbox provides file objects with a .name attribute for the path
|
473 |
-
file_path = file_path_obj.name if hasattr(file_path_obj, 'name') else str(file_path_obj)
|
474 |
-
display_message_parts.append(f"")
|
475 |
-
processed_files_for_history.append(file_path) # Store the actual path for 'respond'
|
476 |
-
|
477 |
-
# For history, we store the text and a list of file paths
|
478 |
-
# The 'respond' function will then re-encode these for the API
|
479 |
-
history_entry_user = (text_content, processed_files_for_history)
|
480 |
-
history.append([history_entry_user, None])
|
481 |
-
print(f"History updated with user input: {history_entry_user}")
|
482 |
return history
|
483 |
|
484 |
-
# Define bot response function
|
485 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
486 |
-
if not history or
|
487 |
-
print("No user message in
|
488 |
-
yield history
|
489 |
return
|
490 |
|
491 |
-
|
492 |
-
text_message_from_history = user_input_tuple[0]
|
493 |
-
image_files_from_history = user_input_tuple[1]
|
494 |
-
|
495 |
-
print(f"Bot processing: text='{text_message_from_history}', images={image_files_from_history}")
|
496 |
|
497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
-
#
|
500 |
for response_chunk in respond(
|
501 |
-
|
502 |
-
|
503 |
-
history
|
504 |
-
|
505 |
-
|
506 |
-
temperature=temperature,
|
507 |
-
top_p=top_p,
|
508 |
-
frequency_penalty=freq_penalty,
|
509 |
-
seed=seed,
|
510 |
-
provider=provider,
|
511 |
-
custom_api_key=api_key,
|
512 |
-
custom_model=custom_model,
|
513 |
-
model_search_term=search_term,
|
514 |
-
selected_model=selected_model
|
515 |
):
|
516 |
-
history[-1][1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
yield history
|
518 |
-
|
519 |
-
# Event handlers
|
520 |
msg.submit(
|
521 |
user,
|
522 |
-
[msg, chatbot],
|
523 |
[chatbot],
|
524 |
queue=False
|
525 |
).then(
|
@@ -529,45 +386,25 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
529 |
model_search_box, featured_model_radio],
|
530 |
[chatbot]
|
531 |
).then(
|
532 |
-
lambda:
|
533 |
None,
|
534 |
[msg]
|
535 |
)
|
536 |
|
537 |
-
|
538 |
-
model_search_box.change(
|
539 |
-
fn=filter_models,
|
540 |
-
inputs=model_search_box,
|
541 |
-
outputs=featured_model_radio
|
542 |
-
)
|
543 |
print("Model search box change event linked.")
|
544 |
|
545 |
-
|
546 |
-
featured_model_radio.change(
|
547 |
-
fn=set_custom_model_from_radio,
|
548 |
-
inputs=featured_model_radio,
|
549 |
-
outputs=custom_model_box
|
550 |
-
)
|
551 |
print("Featured model radio button change event linked.")
|
552 |
|
553 |
-
|
554 |
-
byok_textbox.change(
|
555 |
-
fn=validate_provider,
|
556 |
-
inputs=[byok_textbox, provider_radio],
|
557 |
-
outputs=provider_radio
|
558 |
-
)
|
559 |
print("BYOK textbox change event linked.")
|
560 |
|
561 |
-
|
562 |
-
provider_radio.change(
|
563 |
-
fn=validate_provider,
|
564 |
-
inputs=[byok_textbox, provider_radio],
|
565 |
-
outputs=provider_radio
|
566 |
-
)
|
567 |
print("Provider radio button change event linked.")
|
568 |
|
569 |
print("Gradio interface initialized.")
|
570 |
|
571 |
if __name__ == "__main__":
|
572 |
print("Launching the demo application.")
|
573 |
-
demo.launch(show_api=
|
|
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
|
9 |
+
# Import smolagents Tool
|
10 |
+
from smolagents import Tool
|
|
|
11 |
|
12 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
13 |
print("Access token loaded.")
|
14 |
|
15 |
+
# Initialize the image generation tool
|
16 |
+
# This can be defined globally as it doesn't change per request
|
17 |
try:
|
18 |
image_generation_tool = Tool.from_space(
|
19 |
+
"black-forest-labs/FLUX.1-schnell",
|
20 |
name="image_generator",
|
21 |
+
description="Generates an image from a text prompt. Use it when the user asks to 'generate an image of ...' or 'draw a picture of ...'. The input should be the descriptive prompt for the image."
|
|
|
|
|
22 |
)
|
23 |
print("Image generation tool loaded successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
except Exception as e:
|
25 |
+
print(f"Error loading image generation tool: {e}")
|
26 |
+
image_generation_tool = None
|
|
|
27 |
|
28 |
# Function to encode image to base64
|
29 |
def encode_image(image_path):
|
|
|
47 |
|
48 |
# Encode to base64
|
49 |
buffered = io.BytesIO()
|
50 |
+
image.save(buffered, format="JPEG")
|
51 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
52 |
print("Image encoded successfully")
|
53 |
return img_str
|
|
|
56 |
return None
|
57 |
|
58 |
def respond(
|
59 |
+
message_text, # Changed from 'message' to be explicit about text part
|
60 |
+
image_files, # This will be a list of paths from gr.MultimodalTextbox
|
61 |
+
history: list[list[Any, str | None]], # History can now contain complex user messages
|
62 |
system_message,
|
63 |
max_tokens,
|
64 |
temperature,
|
|
|
71 |
model_search_term,
|
72 |
selected_model
|
73 |
):
|
74 |
+
print(f"Received message text: {message_text}")
|
75 |
+
print(f"Received {len(image_files) if image_files else 0} image files: {image_files}")
|
76 |
+
# print(f"History: {history}") # Can be very verbose
|
77 |
print(f"System message: {system_message}")
|
78 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
79 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
|
83 |
print(f"Model search term: {model_search_term}")
|
84 |
print(f"Selected model from radio: {selected_model}")
|
85 |
|
86 |
+
# Determine which token to use
|
87 |
+
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
88 |
+
|
89 |
+
if custom_api_key.strip() != "":
|
90 |
+
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
91 |
+
else:
|
92 |
+
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
93 |
+
|
94 |
+
user_text_message_lower = message_text.lower() if message_text else ""
|
95 |
|
96 |
+
image_keywords = ["generate image", "draw a picture of", "create an image of", "make an image of"]
|
97 |
+
is_image_generation_request = any(keyword in user_text_message_lower for keyword in image_keywords)
|
98 |
+
|
99 |
+
if is_image_generation_request and image_generation_tool:
|
100 |
+
print("Image generation request detected.")
|
101 |
+
image_prompt = message_text
|
102 |
+
for keyword in image_keywords:
|
103 |
+
if keyword in user_text_message_lower:
|
104 |
+
# Find the keyword in the original case-sensitive message text to split
|
105 |
+
keyword_start_index = user_text_message_lower.find(keyword)
|
106 |
+
image_prompt = message_text[keyword_start_index + len(keyword):].strip()
|
107 |
+
break
|
108 |
+
|
109 |
+
print(f"Extracted image prompt: {image_prompt}")
|
110 |
+
if not image_prompt:
|
111 |
+
yield {"type": "text", "content": "Please provide a description for the image you want to generate."}
|
112 |
return
|
113 |
|
|
|
114 |
try:
|
115 |
+
generated_image_path = image_generation_tool(prompt=image_prompt)
|
116 |
+
print(f"Image generated by tool, path: {generated_image_path}")
|
117 |
+
yield {"type": "image", "path": str(generated_image_path)} # Ensure path is string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
return
|
119 |
except Exception as e:
|
120 |
+
print(f"Error during image generation tool call: {e}")
|
121 |
+
yield {"type": "text", "content": f"Sorry, I couldn't generate the image. Error: {str(e)}"}
|
122 |
return
|
123 |
+
elif is_image_generation_request and not image_generation_tool:
|
124 |
+
yield {"type": "text", "content": "Image generation tool is not available or failed to load."}
|
125 |
+
return
|
126 |
|
127 |
+
# If not an image generation request, proceed with text/multimodal LLM call
|
128 |
+
print("Proceeding with LLM call (text or multimodal).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
client = InferenceClient(token=token_to_use, provider=provider)
|
130 |
+
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
131 |
|
|
|
132 |
if seed == -1:
|
133 |
seed = None
|
134 |
|
135 |
+
# Prepare messages for LLM
|
136 |
+
llm_user_content = []
|
137 |
+
if message_text and message_text.strip():
|
138 |
+
llm_user_content.append({"type": "text", "text": message_text})
|
139 |
+
|
140 |
+
if image_files: # image_files is a list of paths from gr.MultimodalTextbox
|
141 |
+
for img_path in image_files:
|
142 |
+
if img_path:
|
|
|
|
|
143 |
try:
|
144 |
+
encoded_image = encode_image(img_path) # img_path is already a path
|
145 |
if encoded_image:
|
146 |
+
llm_user_content.append({
|
147 |
"type": "image_url",
|
148 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
|
|
|
|
|
149 |
})
|
150 |
except Exception as e:
|
151 |
+
print(f"Error encoding image for LLM: {e}")
|
152 |
+
|
153 |
+
if not llm_user_content: # Should not happen if user() function filters empty messages
|
154 |
+
print("No content for LLM, aborting.")
|
155 |
+
yield {"type": "text", "content": "Please provide some input."}
|
156 |
+
return
|
157 |
|
158 |
+
messages_for_llm = [{"role": "system", "content": system_message}]
|
159 |
+
print("Initial messages array constructed for LLM.")
|
|
|
160 |
|
161 |
+
for val in history: # history item is [user_content_list, assistant_response_str_or_dict]
|
162 |
+
user_content_list_hist = val[0]
|
163 |
+
assistant_response_hist = val[1]
|
164 |
+
|
165 |
+
if user_content_list_hist:
|
166 |
+
# user_content_list_hist is already in the correct format (list of dicts)
|
167 |
+
messages_for_llm.append({"role": "user", "content": user_content_list_hist})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
if assistant_response_hist:
|
170 |
+
# Assistant response could be text or an image dict from a previous tool call
|
171 |
+
if isinstance(assistant_response_hist, dict) and assistant_response_hist.get("type") == "image":
|
172 |
+
messages_for_llm.append({"role": "assistant", "content": [{"type": "text", "text": f"Assistant previously displayed image: {assistant_response_hist.get('path')}"}]})
|
173 |
+
elif isinstance(assistant_response_hist, str):
|
174 |
+
messages_for_llm.append({"role": "assistant", "content": assistant_response_hist})
|
175 |
+
# Else, if it's a dict but not an image type we understand for history, we might skip or log an error
|
176 |
|
177 |
+
messages_for_llm.append({"role": "user", "content": llm_user_content})
|
178 |
+
# print(f"Full messages_for_llm: {messages_for_llm}") # Can be very verbose
|
|
|
179 |
|
|
|
180 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
181 |
+
print(f"Model selected for LLM inference: {model_to_use}")
|
182 |
|
183 |
+
response_text = ""
|
184 |
+
print(f"Sending request to {provider} provider for LLM.")
|
|
|
185 |
|
|
|
186 |
parameters = {
|
187 |
"max_tokens": max_tokens,
|
188 |
"temperature": temperature,
|
|
|
193 |
if seed is not None:
|
194 |
parameters["seed"] = seed
|
195 |
|
|
|
196 |
try:
|
|
|
197 |
stream = client.chat_completion(
|
198 |
model=model_to_use,
|
199 |
+
messages=messages_for_llm,
|
200 |
stream=True,
|
201 |
**parameters
|
202 |
)
|
203 |
|
204 |
+
print("Received LLM tokens: ", end="", flush=True)
|
205 |
|
|
|
206 |
for chunk in stream:
|
207 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
|
|
208 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
209 |
token_text = chunk.choices[0].delta.content
|
210 |
if token_text:
|
211 |
print(token_text, end="", flush=True)
|
212 |
+
response_text += token_text
|
213 |
+
yield {"type": "text", "content": response_text}
|
214 |
|
215 |
print()
|
216 |
except Exception as e:
|
217 |
+
print(f"Error during LLM inference: {e}")
|
218 |
+
response_text += f"\nError: {str(e)}"
|
219 |
+
yield {"type": "text", "content": response_text}
|
220 |
|
221 |
+
print("Completed LLM response generation.")
|
222 |
|
|
|
223 |
def validate_provider(api_key, provider):
|
224 |
if not api_key.strip() and provider != "hf-inference":
|
225 |
return gr.update(value="hf-inference")
|
226 |
return gr.update(value=provider)
|
227 |
|
|
|
228 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
|
229 |
chatbot = gr.Chatbot(
|
230 |
height=600,
|
231 |
show_copy_button=True,
|
232 |
+
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs. Try 'generate image of a cat playing chess'.",
|
233 |
layout="panel",
|
234 |
+
bubble_full_width=False
|
235 |
)
|
236 |
print("Chatbot interface created.")
|
237 |
|
|
|
238 |
msg = gr.MultimodalTextbox(
|
239 |
+
placeholder="Type a message or upload images...",
|
240 |
show_label=False,
|
241 |
container=False,
|
242 |
scale=12,
|
|
|
245 |
sources=["upload"]
|
246 |
)
|
247 |
|
|
|
248 |
with gr.Accordion("Settings", open=False):
|
|
|
249 |
system_message_box = gr.Textbox(
|
250 |
+
value="You are a helpful AI assistant that can understand images and text. If asked to generate an image, respond by saying you will call the image_generator tool.",
|
251 |
placeholder="You are a helpful assistant.",
|
252 |
label="System Prompt"
|
253 |
)
|
254 |
|
|
|
255 |
with gr.Row():
|
256 |
with gr.Column():
|
257 |
+
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
258 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
259 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
with gr.Column():
|
261 |
+
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
262 |
+
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
265 |
+
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
|
266 |
+
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.", placeholder="Enter your Hugging Face API token", type="password")
|
267 |
+
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
|
268 |
+
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
models_list = [
|
271 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct",
|
272 |
+
"meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
|
273 |
+
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
274 |
+
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
|
275 |
+
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct",
|
276 |
+
"Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct",
|
277 |
+
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
]
|
279 |
+
featured_model_radio = gr.Radio(label="Select a model below", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
282 |
|
|
|
283 |
chat_history = gr.State([])
|
284 |
|
|
|
285 |
def filter_models(search_term):
|
286 |
print(f"Filtering models with search term: {search_term}")
|
287 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
288 |
print(f"Filtered models: {filtered}")
|
289 |
+
return gr.update(choices=filtered)
|
290 |
|
|
|
|
|
291 |
def set_custom_model_from_radio(selected):
|
292 |
print(f"Featured model selected: {selected}")
|
293 |
return selected
|
294 |
|
295 |
+
def user(user_multimodal_input, history):
|
296 |
+
print(f"User input (raw from gr.MultimodalTextbox): {user_multimodal_input}")
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
text_content = user_multimodal_input.get("text", "").strip()
|
299 |
+
files = user_multimodal_input.get("files", []) # These are temp file paths from Gradio
|
|
|
300 |
|
301 |
+
if not text_content and not files:
|
302 |
+
print("Empty input, skipping history append.")
|
303 |
+
# Optionally, could raise gr.Error("Please enter a message or upload an image.")
|
304 |
+
# For now, let's allow the bot to respond if history is not empty,
|
305 |
+
# or do nothing if history is also empty.
|
306 |
+
return history
|
307 |
+
|
308 |
+
# Prepare content for history: a list of dicts for multimodal display
|
309 |
+
history_user_entry_content = []
|
310 |
if text_content:
|
311 |
+
history_user_entry_content.append({"type": "text", "text": text_content})
|
312 |
+
|
313 |
+
for file_path_obj in files: # file_path_obj is a FileData object from Gradio
|
314 |
+
if file_path_obj and hasattr(file_path_obj, 'name') and file_path_obj.name:
|
315 |
+
# Gradio's Chatbot can display images directly from file paths
|
316 |
+
# We store it in a format that `respond` can also understand
|
317 |
+
# The path is temporary, Gradio handles making it accessible for display
|
318 |
+
history_user_entry_content.append({"type": "image_url", "image_url": {"url": file_path_obj.name}})
|
319 |
+
print(f"Adding image to history entry: {file_path_obj.name}")
|
320 |
+
|
321 |
+
if history_user_entry_content:
|
322 |
+
history.append([history_user_entry_content, None]) # User part, Bot part (initially None)
|
323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
return history
|
325 |
|
|
|
326 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
327 |
+
if not history or not history[-1][0]: # If no user message or empty user message content
|
328 |
+
print("No user message to process in bot function or user message content is empty.")
|
329 |
+
yield history # Return current history without processing
|
330 |
return
|
331 |
|
332 |
+
user_content_list = history[-1][0] # This is now a list of content dicts
|
|
|
|
|
|
|
|
|
333 |
|
334 |
+
# Extract text and image file paths from the user_content_list for the `respond` function
|
335 |
+
text_for_respond = ""
|
336 |
+
image_files_for_respond = []
|
337 |
+
|
338 |
+
for item in user_content_list:
|
339 |
+
if item["type"] == "text":
|
340 |
+
text_for_respond = item["text"]
|
341 |
+
elif item["type"] == "image_url":
|
342 |
+
image_files_for_respond.append(item["image_url"]["url"])
|
343 |
+
|
344 |
+
history[-1][1] = "" # Clear placeholder for bot response / Initialize bot response
|
345 |
|
346 |
+
# Call the respond function which is now a generator
|
347 |
for response_chunk in respond(
|
348 |
+
text_for_respond,
|
349 |
+
image_files_for_respond,
|
350 |
+
history[:-1], # Pass previous history
|
351 |
+
system_msg, max_tokens, temperature, top_p, freq_penalty, seed,
|
352 |
+
provider, api_key, custom_model, search_term, selected_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
):
|
354 |
+
current_bot_response = history[-1][1]
|
355 |
+
if isinstance(response_chunk, dict):
|
356 |
+
if response_chunk["type"] == "text":
|
357 |
+
# If current bot response is already an image dict, we can't append text.
|
358 |
+
# This indicates a new text response after an image, or just text.
|
359 |
+
if isinstance(current_bot_response, dict) and current_bot_response.get("type") == "image":
|
360 |
+
# This case should ideally not happen if an image is the final response from a tool.
|
361 |
+
# If it does, we might need to start a new bot message in history.
|
362 |
+
# For now, we'll overwrite if the new chunk is text.
|
363 |
+
history[-1][1] = response_chunk["content"]
|
364 |
+
elif isinstance(current_bot_response, str):
|
365 |
+
history[-1][1] = response_chunk["content"] # Accumulate text
|
366 |
+
else: # current_bot_response is likely "" or None
|
367 |
+
history[-1][1] = response_chunk["content"]
|
368 |
+
|
369 |
+
elif response_chunk["type"] == "image":
|
370 |
+
# Image response from tool. Gradio Chatbot displays this as an image.
|
371 |
+
# The path should be accessible by Gradio.
|
372 |
+
# If there was prior text content for this turn, it's now overwritten by the image.
|
373 |
+
# This means a tool call that produces an image is considered the primary response for that turn.
|
374 |
+
history[-1][1] = {"path": response_chunk["path"], "mime_type": "image/jpeg"} # Assuming JPEG, could be PNG
|
375 |
yield history
|
376 |
+
|
|
|
377 |
msg.submit(
|
378 |
user,
|
379 |
+
[msg, chatbot],
|
380 |
[chatbot],
|
381 |
queue=False
|
382 |
).then(
|
|
|
386 |
model_search_box, featured_model_radio],
|
387 |
[chatbot]
|
388 |
).then(
|
389 |
+
lambda: {"text": "", "files": []}, # Clear MultimodalTextbox
|
390 |
None,
|
391 |
[msg]
|
392 |
)
|
393 |
|
394 |
+
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
|
|
|
|
|
|
|
|
|
|
|
395 |
print("Model search box change event linked.")
|
396 |
|
397 |
+
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
|
|
|
|
|
|
|
|
|
|
|
398 |
print("Featured model radio button change event linked.")
|
399 |
|
400 |
+
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
|
|
|
|
|
|
|
|
401 |
print("BYOK textbox change event linked.")
|
402 |
|
403 |
+
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
|
|
|
|
|
|
|
|
404 |
print("Provider radio button change event linked.")
|
405 |
|
406 |
print("Gradio interface initialized.")
|
407 |
|
408 |
if __name__ == "__main__":
|
409 |
print("Launching the demo application.")
|
410 |
+
demo.launch(show_api=True)
|