Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
from openai import OpenAI
|
3 |
import os
|
|
|
4 |
|
5 |
-
# Load the Hugging Face access token from environment variables
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
#
|
17 |
def respond(
|
18 |
message,
|
19 |
history: list[tuple[str, str]],
|
@@ -23,150 +26,129 @@ def respond(
|
|
23 |
top_p,
|
24 |
frequency_penalty,
|
25 |
seed,
|
26 |
-
custom_model,
|
27 |
-
|
28 |
):
|
29 |
|
|
|
|
|
30 |
print(f"Received message: {message}")
|
31 |
-
print(f"History: {history}")
|
32 |
print(f"System message: {system_message}")
|
33 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
34 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
35 |
-
print(f"
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Convert seed to None if -1 (meaning random)
|
39 |
if seed == -1:
|
40 |
seed = None
|
41 |
|
42 |
-
# Start constructing the message list for the API call with the system message
|
43 |
messages = [{"role": "system", "content": system_message}]
|
44 |
-
print("Initial messages array constructed.")
|
45 |
|
46 |
-
# Add
|
47 |
for val in history:
|
48 |
-
user_part = val[0]
|
49 |
-
|
50 |
-
if
|
51 |
-
messages.append({"role": "user", "content": user_part})
|
52 |
-
print(f"Added user message to context: {user_part}")
|
53 |
-
if assistant_part:
|
54 |
-
messages.append({"role": "assistant", "content": assistant_part})
|
55 |
-
print(f"Added assistant message to context: {assistant_part}")
|
56 |
-
|
57 |
-
# Add the latest user message to the list
|
58 |
-
messages.append({"role": "user", "content": message})
|
59 |
-
print("Latest user message appended.")
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
#
|
64 |
-
custom_model_stripped = custom_model.strip() # Remove leading/trailing whitespace
|
65 |
-
if custom_model_stripped != "":
|
66 |
-
model_to_use = custom_model_stripped # Use custom model if provided
|
67 |
-
print(f"Using custom model: {model_to_use}")
|
68 |
-
else:
|
69 |
-
model_to_use = featured_model # Use the selected featured model
|
70 |
-
print(f"Using selected featured model: {model_to_use}")
|
71 |
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
#
|
74 |
response = ""
|
75 |
-
print("Sending request to
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
print("Completed response generation.")
|
97 |
|
98 |
-
# --- GRADIO UI ---
|
99 |
|
100 |
-
|
101 |
-
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
|
102 |
print("Chatbot interface created.")
|
103 |
|
104 |
-
#
|
105 |
-
system_message_box = gr.Textbox(value="
|
106 |
-
|
107 |
-
|
108 |
-
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
|
109 |
-
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
110 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
111 |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
112 |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
113 |
-
|
114 |
-
# Create the Custom Model input box
|
115 |
custom_model_box = gr.Textbox(
|
116 |
-
value="",
|
117 |
-
label="Custom Model",
|
118 |
-
info="(Optional) Provide a
|
119 |
-
placeholder="
|
120 |
)
|
121 |
|
122 |
-
#
|
123 |
-
|
124 |
-
"
|
125 |
-
|
126 |
-
"
|
127 |
-
"
|
128 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
129 |
-
"meta-llama/Llama-3.1-8B-Instruct",
|
130 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
131 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
132 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
133 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
134 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
135 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
136 |
-
"Qwen/Qwen3-235B-A22B",
|
137 |
-
"Qwen/Qwen3-32B",
|
138 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
139 |
-
"Qwen/Qwen2.5-3B-Instruct",
|
140 |
-
"Qwen/Qwen2.5-0.5B-Instruct",
|
141 |
-
"Qwen/QwQ-32B",
|
142 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
143 |
-
"microsoft/Phi-3.5-mini-instruct",
|
144 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
145 |
-
"microsoft/Phi-3-mini-4k-instruct",
|
146 |
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
147 |
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
148 |
-
"HuggingFaceH4/zephyr-7b-beta",
|
149 |
-
"HuggingFaceTB/SmolLM2-360M-Instruct",
|
150 |
-
"tiiuae/falcon-7b-instruct",
|
151 |
-
"01-ai/Yi-1.5-34B-Chat",
|
152 |
-
]
|
153 |
-
print("Models list initialized.")
|
154 |
-
|
155 |
-
# Create the radio button selector for featured models
|
156 |
-
featured_model_radio = gr.Radio(
|
157 |
-
label="Select a Featured Model", # Changed label slightly
|
158 |
-
choices=models_list,
|
159 |
-
value="meta-llama/Llama-3.3-70B-Instruct", # Set the default selection
|
160 |
-
interactive=True
|
161 |
)
|
162 |
-
print("
|
163 |
|
164 |
|
165 |
-
# ---
|
166 |
-
# <<< `additional_inputs` UPDATED >>>
|
167 |
demo = gr.ChatInterface(
|
168 |
-
fn=respond,
|
169 |
-
additional_inputs=[
|
|
|
170 |
system_message_box,
|
171 |
max_tokens_slider,
|
172 |
temperature_slider,
|
@@ -174,73 +156,81 @@ demo = gr.ChatInterface(
|
|
174 |
frequency_penalty_slider,
|
175 |
seed_slider,
|
176 |
custom_model_box,
|
177 |
-
|
178 |
],
|
179 |
-
fill_height=True,
|
180 |
-
chatbot=chatbot,
|
181 |
-
theme="Nymbo/Nymbo_Theme",
|
|
|
|
|
182 |
)
|
183 |
print("ChatInterface object created.")
|
184 |
|
185 |
-
# --- Add
|
186 |
-
with demo:
|
187 |
-
|
188 |
-
|
189 |
-
gr.
|
190 |
-
model_search_box = gr.Textbox(
|
191 |
-
label="Filter Models",
|
192 |
-
placeholder="Search featured models...",
|
193 |
-
lines=1
|
194 |
-
)
|
195 |
print("Model search box created.")
|
196 |
|
197 |
-
#
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
demo.load(lambda: temperature_slider, outputs=temperature_slider)
|
214 |
-
demo.load(lambda: top_p_slider, outputs=top_p_slider)
|
215 |
-
demo.load(lambda: frequency_penalty_slider, outputs=frequency_penalty_slider)
|
216 |
-
demo.load(lambda: seed_slider, outputs=seed_slider)
|
217 |
-
print("Parameter sliders added to layout.")
|
218 |
-
|
219 |
-
|
220 |
-
# --- Event Listeners ---
|
221 |
|
222 |
-
# Function to filter the radio button choices based on search input
|
223 |
def filter_models(search_term):
|
224 |
print(f"Filtering models with search term: {search_term}")
|
225 |
-
# List comprehension to find models matching the search term (case-insensitive)
|
226 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
print(f"Filtered models: {filtered}")
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
)
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
|
240 |
-
print("Gradio interface
|
241 |
|
242 |
-
# --- Launch the Application ---
|
243 |
if __name__ == "__main__":
|
244 |
-
print("Launching the
|
245 |
-
|
246 |
-
demo.launch(show_api=True)
|
|
|
1 |
import gradio as gr
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
+
import requests # Added for potential future use, though OpenAI client handles it now
|
5 |
|
|
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
7 |
+
if not ACCESS_TOKEN:
|
8 |
+
print("Warning: HF_TOKEN environment variable not set. Authentication might fail.")
|
9 |
+
else:
|
10 |
+
print("Access token loaded.")
|
11 |
|
12 |
+
# Base URLs for different providers
|
13 |
+
HF_INFERENCE_BASE_URL = "https://api-inference.huggingface.co/v1/"
|
14 |
+
CEREBRAS_ROUTER_BASE_URL = "https://router.huggingface.co/cerebras/v1/" # Use base URL for OpenAI client
|
15 |
+
|
16 |
+
# Default provider
|
17 |
+
DEFAULT_PROVIDER = "hf-inference"
|
18 |
|
19 |
+
# --- Main Respond Function ---
|
20 |
def respond(
|
21 |
message,
|
22 |
history: list[tuple[str, str]],
|
|
|
26 |
top_p,
|
27 |
frequency_penalty,
|
28 |
seed,
|
29 |
+
custom_model,
|
30 |
+
inference_provider # New argument for provider selection
|
31 |
):
|
32 |
|
33 |
+
print(f"--- New Request ---")
|
34 |
+
print(f"Selected Inference Provider: {inference_provider}")
|
35 |
print(f"Received message: {message}")
|
36 |
+
# print(f"History: {history}") # Can be verbose
|
37 |
print(f"System message: {system_message}")
|
38 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
39 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
40 |
+
print(f"Selected model (custom_model): {custom_model}")
|
41 |
+
|
42 |
+
# Determine the base URL based on the selected provider
|
43 |
+
if inference_provider == "cerebras":
|
44 |
+
base_url = CEREBRAS_ROUTER_BASE_URL
|
45 |
+
print(f"Using Cerebras Router endpoint: {base_url}")
|
46 |
+
else: # Default to hf-inference
|
47 |
+
base_url = HF_INFERENCE_BASE_URL
|
48 |
+
print(f"Using HF Inference API endpoint: {base_url}")
|
49 |
+
|
50 |
+
# Initialize the OpenAI client dynamically for each request
|
51 |
+
try:
|
52 |
+
client = OpenAI(
|
53 |
+
base_url=base_url,
|
54 |
+
api_key=ACCESS_TOKEN,
|
55 |
+
)
|
56 |
+
print("OpenAI client initialized for the request.")
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error initializing OpenAI client: {e}")
|
59 |
+
yield f"Error: Could not initialize API client for provider {inference_provider}. Check token and endpoint."
|
60 |
+
return
|
61 |
|
62 |
# Convert seed to None if -1 (meaning random)
|
63 |
if seed == -1:
|
64 |
seed = None
|
65 |
|
|
|
66 |
messages = [{"role": "system", "content": system_message}]
|
67 |
+
# print("Initial messages array constructed.") # Less verbose logging
|
68 |
|
69 |
+
# Add conversation history to the context
|
70 |
for val in history:
|
71 |
+
user_part, assistant_part = val[0], val[1]
|
72 |
+
if user_part: messages.append({"role": "user", "content": user_part})
|
73 |
+
if assistant_part: messages.append({"role": "assistant", "content": assistant_part})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# Append the latest user message
|
76 |
+
messages.append({"role": "user", "content": message})
|
77 |
+
# print("Full message context prepared.") # Less verbose logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# If user provided a model, use that; otherwise, fall back to a default model
|
80 |
+
# Ensure a default model is always set if custom_model is empty
|
81 |
+
model_to_use = custom_model.strip() if custom_model.strip() else "meta-llama/Llama-3.3-70B-Instruct"
|
82 |
+
print(f"Model selected for inference: {model_to_use}")
|
83 |
|
84 |
+
# Start streaming response
|
85 |
response = ""
|
86 |
+
print(f"Sending request to {inference_provider} via {base_url}...")
|
87 |
+
|
88 |
+
try:
|
89 |
+
stream = client.chat.completions.create(
|
90 |
+
model=model_to_use,
|
91 |
+
max_tokens=max_tokens,
|
92 |
+
stream=True,
|
93 |
+
temperature=temperature,
|
94 |
+
top_p=top_p,
|
95 |
+
frequency_penalty=frequency_penalty,
|
96 |
+
seed=seed,
|
97 |
+
messages=messages,
|
98 |
+
)
|
99 |
+
for message_chunk in stream:
|
100 |
+
token_text = message_chunk.choices[0].delta.content
|
101 |
+
# Handle potential None or empty tokens gracefully
|
102 |
+
if token_text:
|
103 |
+
# print(f"Received token: {token_text}") # Very verbose
|
104 |
+
response += token_text
|
105 |
+
yield response
|
106 |
+
# Handle potential finish reason if needed (e.g., length)
|
107 |
+
# finish_reason = message_chunk.choices[0].finish_reason
|
108 |
+
# if finish_reason:
|
109 |
+
# print(f"Stream finished with reason: {finish_reason}")
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Error during API call to {inference_provider}: {e}")
|
113 |
+
yield f"Error: API call failed. Details: {str(e)}"
|
114 |
+
return # Stop generation on error
|
115 |
|
116 |
print("Completed response generation.")
|
117 |
|
118 |
+
# --- GRADIO UI Elements ---
|
119 |
|
120 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and provider, then begin chatting", layout="panel")
|
|
|
121 |
print("Chatbot interface created.")
|
122 |
|
123 |
+
# Moved these inside the Accordion later
|
124 |
+
system_message_box = gr.Textbox(value="You are a helpful assistant.", label="System Prompt")
|
125 |
+
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens") # Increased default
|
126 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") # Adjusted range
|
|
|
|
|
127 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
128 |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
129 |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
|
|
|
|
130 |
custom_model_box = gr.Textbox(
|
131 |
+
value="",
|
132 |
+
label="Custom Model Path",
|
133 |
+
info="(Optional) Provide a Hugging Face model path. Overrides featured model selection.",
|
134 |
+
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
135 |
)
|
136 |
|
137 |
+
# New UI Element for Provider Selection (will be placed in Accordion)
|
138 |
+
inference_provider_radio = gr.Radio(
|
139 |
+
choices=["hf-inference", "cerebras"],
|
140 |
+
value=DEFAULT_PROVIDER,
|
141 |
+
label="Inference Provider",
|
142 |
+
info=f"Select the backend API. Default: {DEFAULT_PROVIDER}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
)
|
144 |
+
print("Inference provider radio button created.")
|
145 |
|
146 |
|
147 |
+
# --- Gradio Chat Interface Definition ---
|
|
|
148 |
demo = gr.ChatInterface(
|
149 |
+
fn=respond,
|
150 |
+
additional_inputs=[
|
151 |
+
# Order matters: must match the 'respond' function signature
|
152 |
system_message_box,
|
153 |
max_tokens_slider,
|
154 |
temperature_slider,
|
|
|
156 |
frequency_penalty_slider,
|
157 |
seed_slider,
|
158 |
custom_model_box,
|
159 |
+
inference_provider_radio, # Added the new input
|
160 |
],
|
161 |
+
fill_height=True,
|
162 |
+
chatbot=chatbot,
|
163 |
+
theme="Nymbo/Nymbo_Theme",
|
164 |
+
title="Multi-Provider Chat Hub",
|
165 |
+
description="Chat with various models using different inference backends (HF Inference API or Cerebras via HF Router)."
|
166 |
)
|
167 |
print("ChatInterface object created.")
|
168 |
|
169 |
+
# --- Add Accordions for Settings within the Demo context ---
|
170 |
+
with demo:
|
171 |
+
# Model Selection Accordion (existing logic)
|
172 |
+
with gr.Accordion("Model Selection", open=False):
|
173 |
+
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1)
|
|
|
|
|
|
|
|
|
|
|
174 |
print("Model search box created.")
|
175 |
|
176 |
+
# Example models list (keep your extensive list)
|
177 |
+
models_list = [
|
178 |
+
"meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct",
|
179 |
+
"NousResearch/Hermes-3-Llama-3.1-8B", "mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
180 |
+
"mistralai/Mistral-7B-Instruct-v0.3", "Qwen/Qwen3-32B", "microsoft/Phi-3.5-mini-instruct",
|
181 |
+
# Add the rest of your models here...
|
182 |
+
]
|
183 |
+
print("Models list initialized.")
|
184 |
+
|
185 |
+
featured_model_radio = gr.Radio(
|
186 |
+
label="Select a Featured Model",
|
187 |
+
choices=models_list,
|
188 |
+
value="meta-llama/Llama-3.3-70B-Instruct", # Default featured model
|
189 |
+
interactive=True
|
190 |
+
)
|
191 |
+
print("Featured models radio button created.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
|
|
193 |
def filter_models(search_term):
|
194 |
print(f"Filtering models with search term: {search_term}")
|
|
|
195 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
196 |
+
# Ensure a valid value is selected if the current one is filtered out
|
197 |
+
current_value = featured_model_radio.value
|
198 |
+
if current_value not in filtered and filtered:
|
199 |
+
new_value = filtered[0] # Select the first available filtered model
|
200 |
+
elif not filtered:
|
201 |
+
new_value = None # Or handle empty case as needed
|
202 |
+
else:
|
203 |
+
new_value = current_value # Keep current if still valid
|
204 |
print(f"Filtered models: {filtered}")
|
205 |
+
return gr.update(choices=filtered, value=new_value)
|
206 |
+
|
207 |
+
|
208 |
+
def set_custom_model_from_radio(selected_model):
|
209 |
+
"""Updates the Custom Model text box when a featured model is selected."""
|
210 |
+
print(f"Featured model selected: {selected_model}")
|
211 |
+
return selected_model # Directly return the selected model name
|
212 |
+
|
213 |
+
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
|
214 |
+
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
|
215 |
+
print("Model selection events linked.")
|
216 |
+
|
217 |
+
# Advanced Settings Accordion (New)
|
218 |
+
with gr.Accordion("Advanced Settings", open=False):
|
219 |
+
# Place the provider selection and parameter sliders here
|
220 |
+
gr.Markdown("Configure inference parameters and select the backend provider.")
|
221 |
+
# Add the UI elements defined earlier into this accordion
|
222 |
+
gr.Textbox(value="You are a helpful assistant.", label="System Prompt").render() # Render system_message_box here
|
223 |
+
inference_provider_radio.render() # Render the provider radio here
|
224 |
+
max_tokens_slider.render()
|
225 |
+
temperature_slider.render()
|
226 |
+
top_p_slider.render()
|
227 |
+
frequency_penalty_slider.render()
|
228 |
+
seed_slider.render()
|
229 |
+
print("Advanced settings accordion created with provider selection and parameters.")
|
230 |
|
231 |
|
232 |
+
print("Gradio interface fully initialized.")
|
233 |
|
|
|
234 |
if __name__ == "__main__":
|
235 |
+
print("Launching the demo application.")
|
236 |
+
demo.launch(show_api=False)
|
|