Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ def encode_image(image_path):
|
|
15 |
print("No image path provided")
|
16 |
return None
|
17 |
|
18 |
-
try
|
19 |
print(f"Encoding image from path: {image_path}")
|
20 |
|
21 |
# If it's already a PIL Image
|
@@ -31,7 +31,7 @@ def encode_image(image_path):
|
|
31 |
|
32 |
# Encode to base64
|
33 |
buffered = io.BytesIO()
|
34 |
-
image.save(buffered, format="JPEG")
|
35 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
36 |
print("Image encoded successfully")
|
37 |
return img_str
|
@@ -52,11 +52,33 @@ def respond(
|
|
52 |
provider,
|
53 |
custom_api_key,
|
54 |
custom_model,
|
55 |
-
model_search_term,
|
56 |
-
selected_model
|
57 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
print(f"Received message: {message}")
|
59 |
-
print(f"Received {len(image_files) if image_files else 0} images")
|
60 |
print(f"History: {history}")
|
61 |
print(f"System message: {system_message}")
|
62 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
@@ -83,90 +105,80 @@ def respond(
|
|
83 |
if seed == -1:
|
84 |
seed = None
|
85 |
|
86 |
-
# Create multimodal content if images are present
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if image_files and len(image_files) > 0:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
# Add text part if there is any
|
92 |
-
if message and message.strip():
|
93 |
-
user_content.append({
|
94 |
-
"type": "text",
|
95 |
-
"text": message
|
96 |
-
})
|
97 |
-
|
98 |
-
# Add image parts
|
99 |
-
for img in image_files:
|
100 |
-
if img is not None:
|
101 |
-
# Get raw image data from path
|
102 |
try:
|
103 |
-
encoded_image = encode_image(
|
104 |
if encoded_image:
|
105 |
-
|
106 |
"type": "image_url",
|
107 |
"image_url": {
|
108 |
"url": f"data:image/jpeg;base64,{encoded_image}"
|
109 |
}
|
110 |
})
|
111 |
except Exception as e:
|
112 |
-
print(f"Error encoding image: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
else:
|
114 |
-
|
115 |
-
|
116 |
|
117 |
# Prepare messages in the format expected by the API
|
118 |
-
|
119 |
print("Initial messages array constructed.")
|
120 |
|
121 |
# Add conversation history to the context
|
122 |
-
for val in history:
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
messages.append({"role": "user", "content": history_content})
|
151 |
-
else:
|
152 |
-
# Regular text message
|
153 |
-
messages.append({"role": "user", "content": user_part})
|
154 |
-
print(f"Added user message to context (type: {type(user_part)})")
|
155 |
-
|
156 |
-
if assistant_part:
|
157 |
-
messages.append({"role": "assistant", "content": assistant_part})
|
158 |
-
print(f"Added assistant message to context: {assistant_part}")
|
159 |
|
160 |
-
# Append the latest user message
|
161 |
-
messages.append({"role": "user", "content": user_content})
|
162 |
-
print(f"Latest user message appended (content type: {type(user_content)})")
|
163 |
|
164 |
# Determine which model to use, prioritizing custom_model if provided
|
165 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
166 |
print(f"Model selected for inference: {model_to_use}")
|
167 |
|
168 |
# Start with an empty string to build the response as tokens stream in
|
169 |
-
|
170 |
print(f"Sending request to {provider} provider.")
|
171 |
|
172 |
# Prepare parameters for the chat completion request
|
@@ -185,7 +197,7 @@ def respond(
|
|
185 |
# Create a generator for the streaming response
|
186 |
stream = client.chat_completion(
|
187 |
model=model_to_use,
|
188 |
-
messages=messages
|
189 |
stream=True,
|
190 |
**parameters
|
191 |
)
|
@@ -197,17 +209,17 @@ def respond(
|
|
197 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
198 |
# Extract the content from the response
|
199 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
200 |
-
|
201 |
-
if
|
202 |
-
print(
|
203 |
-
|
204 |
-
yield
|
205 |
|
206 |
print()
|
207 |
except Exception as e:
|
208 |
print(f"Error during inference: {e}")
|
209 |
-
|
210 |
-
yield
|
211 |
|
212 |
print("Completed response generation.")
|
213 |
|
@@ -294,212 +306,221 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
294 |
|
295 |
# Provider selection
|
296 |
providers_list = [
|
297 |
-
"hf-inference",
|
298 |
-
"
|
299 |
-
"together", # Together AI
|
300 |
-
"sambanova", # SambaNova
|
301 |
-
"novita", # Novita AI
|
302 |
-
"cohere", # Cohere
|
303 |
-
"fireworks-ai", # Fireworks AI
|
304 |
-
"hyperbolic", # Hyperbolic
|
305 |
-
"nebius", # Nebius
|
306 |
]
|
307 |
|
308 |
provider_radio = gr.Radio(
|
309 |
-
choices=providers_list,
|
310 |
-
value="hf-inference",
|
311 |
-
label="Inference Provider",
|
312 |
)
|
313 |
|
314 |
-
# New BYOK textbox
|
315 |
byok_textbox = gr.Textbox(
|
316 |
-
value="",
|
317 |
-
label="BYOK (Bring Your Own Key)",
|
318 |
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
319 |
-
placeholder="Enter your Hugging Face API token",
|
320 |
-
type="password" # Hide the API key for security
|
321 |
)
|
322 |
|
323 |
-
# Custom model box
|
324 |
custom_model_box = gr.Textbox(
|
325 |
-
value="",
|
326 |
-
label="Custom Model",
|
327 |
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
328 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
329 |
)
|
330 |
|
331 |
-
# Model search
|
332 |
model_search_box = gr.Textbox(
|
333 |
-
label="Filter Models",
|
334 |
-
placeholder="Search for a featured model...",
|
335 |
-
lines=1
|
336 |
)
|
337 |
|
338 |
-
# Featured models list
|
339 |
models_list = [
|
340 |
-
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
341 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
342 |
-
"meta-llama/Llama-3.
|
343 |
-
"meta-llama/Llama-3.
|
344 |
-
"
|
345 |
-
"
|
346 |
-
"
|
347 |
-
"
|
348 |
-
"
|
349 |
-
"
|
350 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
351 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
352 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
353 |
-
"Qwen/Qwen3-235B-A22B",
|
354 |
-
"Qwen/Qwen3-32B",
|
355 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
356 |
-
"Qwen/Qwen2.5-3B-Instruct",
|
357 |
-
"Qwen/Qwen2.5-0.5B-Instruct",
|
358 |
-
"Qwen/QwQ-32B",
|
359 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
360 |
-
"microsoft/Phi-3.5-mini-instruct",
|
361 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
362 |
-
"microsoft/Phi-3-mini-4k-instruct",
|
363 |
]
|
364 |
|
365 |
featured_model_radio = gr.Radio(
|
366 |
-
label="Select a model below",
|
367 |
-
|
368 |
-
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
|
369 |
-
interactive=True
|
370 |
)
|
371 |
|
372 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
373 |
|
374 |
-
# MCP Support Information
|
375 |
-
with gr.Accordion("MCP Support (for
|
376 |
gr.Markdown("""
|
377 |
-
### Model Context Protocol
|
378 |
-
|
379 |
-
This application can function as an MCP Server, allowing compatible AI models and agents (like Claude Desktop or custom MCP clients) to use its text and image generation capabilities as a tool.
|
380 |
-
|
381 |
-
When MCP is enabled, Gradio automatically exposes the relevant functions (likely based on the `bot` function in this app) as MCP tools.
|
382 |
|
383 |
-
|
|
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
-
**Example MCP Client Configuration (`mcp.json`
|
391 |
```json
|
392 |
{
|
393 |
-
"
|
394 |
-
|
395 |
-
"
|
|
|
|
|
|
|
|
|
396 |
}
|
397 |
-
|
398 |
}
|
399 |
```
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
* It's highly recommended to inspect the MCP schema for this server to understand the exact tool names, descriptions, and input/output schemas. You can usually find this at: `http://127.0.0.1:7860/gradio_api/mcp/schema` (or the equivalent URL for your deployed Space).
|
406 |
-
|
407 |
-
This allows for powerful integrations where an AI agent can programmatically request text or multimodal generations from this Serverless-TextGen-Hub.
|
408 |
""")
|
409 |
|
410 |
# Chat history state
|
411 |
-
chat_history = gr.State([])
|
412 |
|
413 |
# Function to filter models
|
414 |
-
def filter_models(search_term):
|
415 |
print(f"Filtering models with search term: {search_term}")
|
416 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
417 |
print(f"Filtered models: {filtered}")
|
418 |
-
return gr.update(choices=filtered)
|
419 |
|
420 |
# Function to set custom model from radio
|
421 |
-
def set_custom_model_from_radio(selected):
|
422 |
print(f"Featured model selected: {selected}")
|
|
|
|
|
423 |
return selected
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
430 |
-
print("Empty message, skipping")
|
431 |
-
return history # Return immediately if message is empty
|
432 |
|
433 |
-
text_content =
|
434 |
-
files =
|
435 |
|
436 |
-
print(f"
|
437 |
-
print(f"
|
438 |
|
439 |
-
|
440 |
-
print("No content to display")
|
441 |
-
return history
|
442 |
-
|
443 |
-
# Append text message first if it exists and is not empty
|
444 |
if text_content:
|
445 |
-
print(f"Adding text message: {text_content}")
|
446 |
history.append([text_content, None])
|
447 |
-
|
448 |
-
|
|
|
449 |
if files:
|
450 |
for file_path in files:
|
451 |
-
if file_path and isinstance(file_path, str): #
|
452 |
-
|
453 |
-
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
return history
|
456 |
|
457 |
# Define bot response function
|
458 |
-
def bot(
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
return
|
466 |
|
467 |
-
user_message_content = history[-1][0] # This is the user's latest message (text or image markdown)
|
468 |
-
print(f"Bot processing user message content: {user_message_content}")
|
469 |
-
|
470 |
-
# Determine if the current turn is primarily about an image or text
|
471 |
-
# This logic assumes images are added as separate history entries like ""
|
472 |
-
# and text prompts might precede them or be separate.
|
473 |
|
474 |
-
|
475 |
-
current_image_files_for_api = []
|
476 |
-
|
477 |
-
# Check if the last entry is an image
|
478 |
-
if isinstance(user_message_content, str) and user_message_content.startswith(":
|
479 |
-
image_path = user_message_content.replace(".replace(")", "")
|
480 |
-
current_image_files_for_api.append(image_path)
|
481 |
-
print(f"Bot identified image in last history entry: {image_path}")
|
482 |
-
# If it's an image, check the second to last entry for a text prompt
|
483 |
-
if len(history) > 1:
|
484 |
-
prev_content = history[-2][0]
|
485 |
-
if isinstance(prev_content, str) and not prev_content.startswith(":
|
486 |
-
current_message_text_for_api = prev_content
|
487 |
-
print(f"Bot identified preceding text for image: {current_message_text_for_api}")
|
488 |
-
else: # Last entry is text
|
489 |
-
current_message_text_for_api = user_message_content
|
490 |
-
print(f"Bot identified text in last history entry: {current_message_text_for_api}")
|
491 |
-
|
492 |
-
# The history sent to `respond` should not include the current turn's input,
|
493 |
-
# as `respond` will add `message` (current_message_text_for_api) to its internal `messages` list.
|
494 |
-
# If an image is present, it's passed via `image_files`.
|
495 |
-
history_for_respond_func = history[:-1] # Pass history *before* the current turn
|
496 |
-
|
497 |
-
history[-1][1] = "" # Initialize assistant's response for the current turn
|
498 |
|
|
|
|
|
|
|
|
|
499 |
for response_chunk in respond(
|
500 |
-
message=
|
501 |
-
image_files=
|
502 |
-
history=
|
503 |
system_message=system_msg,
|
504 |
max_tokens=max_tokens,
|
505 |
temperature=temperature,
|
@@ -509,14 +530,14 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
509 |
provider=provider,
|
510 |
custom_api_key=api_key,
|
511 |
custom_model=custom_model,
|
512 |
-
model_search_term=
|
513 |
selected_model=selected_model
|
514 |
):
|
515 |
-
history[-1][1] = response_chunk
|
516 |
yield history
|
517 |
|
518 |
-
|
519 |
# Event handlers
|
|
|
520 |
msg.submit(
|
521 |
user,
|
522 |
[msg, chatbot],
|
@@ -526,39 +547,32 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
526 |
bot,
|
527 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
528 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
529 |
-
model_search_box,
|
|
|
530 |
[chatbot]
|
531 |
).then(
|
532 |
-
lambda: {"text": "", "files": []},
|
533 |
None,
|
534 |
[msg]
|
535 |
)
|
536 |
|
537 |
model_search_box.change(
|
538 |
-
fn=filter_models,
|
539 |
-
inputs=model_search_box,
|
540 |
-
outputs=featured_model_radio
|
541 |
)
|
542 |
print("Model search box change event linked.")
|
543 |
|
544 |
featured_model_radio.change(
|
545 |
-
fn=set_custom_model_from_radio,
|
546 |
-
inputs=featured_model_radio,
|
547 |
-
outputs=custom_model_box
|
548 |
)
|
549 |
print("Featured model radio button change event linked.")
|
550 |
|
551 |
byok_textbox.change(
|
552 |
-
fn=validate_provider,
|
553 |
-
inputs=[byok_textbox, provider_radio],
|
554 |
-
outputs=provider_radio
|
555 |
)
|
556 |
print("BYOK textbox change event linked.")
|
557 |
|
558 |
provider_radio.change(
|
559 |
-
fn=validate_provider,
|
560 |
-
inputs=[byok_textbox, provider_radio],
|
561 |
-
outputs=provider_radio
|
562 |
)
|
563 |
print("Provider radio button change event linked.")
|
564 |
|
@@ -566,4 +580,5 @@ print("Gradio interface initialized.")
|
|
566 |
|
567 |
if __name__ == "__main__":
|
568 |
print("Launching the demo application.")
|
569 |
-
|
|
|
|
15 |
print("No image path provided")
|
16 |
return None
|
17 |
|
18 |
+
try:
|
19 |
print(f"Encoding image from path: {image_path}")
|
20 |
|
21 |
# If it's already a PIL Image
|
|
|
31 |
|
32 |
# Encode to base64
|
33 |
buffered = io.BytesIO()
|
34 |
+
image.save(buffered, format="JPEG") # Keep JPEG for consistency with image_url
|
35 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
36 |
print("Image encoded successfully")
|
37 |
return img_str
|
|
|
52 |
provider,
|
53 |
custom_api_key,
|
54 |
custom_model,
|
55 |
+
model_search_term, # Retained for function signature consistency if called elsewhere
|
56 |
+
selected_model # Retained for function signature consistency
|
57 |
):
|
58 |
+
"""
|
59 |
+
Core function to stream responses from a language model.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
message (str | list): The user's message, can be text or multimodal content.
|
63 |
+
image_files (list[str]): List of paths to image files for the current turn.
|
64 |
+
history (list[tuple[str, str]]): Conversation history.
|
65 |
+
system_message (str): System prompt for the model.
|
66 |
+
max_tokens (int): Maximum tokens for the response.
|
67 |
+
temperature (float): Sampling temperature.
|
68 |
+
top_p (float): Top-p (nucleus) sampling.
|
69 |
+
frequency_penalty (float): Frequency penalty.
|
70 |
+
seed (int): Random seed (-1 for random).
|
71 |
+
provider (str): Inference provider.
|
72 |
+
custom_api_key (str): Custom API key.
|
73 |
+
custom_model (str): Custom model ID.
|
74 |
+
model_search_term (str): Term for searching models (UI related).
|
75 |
+
selected_model (str): Model selected from UI list.
|
76 |
+
|
77 |
+
Yields:
|
78 |
+
str: The cumulative response from the model.
|
79 |
+
"""
|
80 |
print(f"Received message: {message}")
|
81 |
+
print(f"Received {len(image_files) if image_files else 0} images for current turn")
|
82 |
print(f"History: {history}")
|
83 |
print(f"System message: {system_message}")
|
84 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
|
|
105 |
if seed == -1:
|
106 |
seed = None
|
107 |
|
108 |
+
# Create multimodal content if images are present for the current message
|
109 |
+
# The 'message' parameter to 'respond' is now the text part of the current turn
|
110 |
+
# 'image_files' parameter to 'respond' now holds image paths for the current turn
|
111 |
+
current_turn_content = []
|
112 |
+
if message and isinstance(message, str) and message.strip():
|
113 |
+
current_turn_content.append({
|
114 |
+
"type": "text",
|
115 |
+
"text": message
|
116 |
+
})
|
117 |
+
|
118 |
if image_files and len(image_files) > 0:
|
119 |
+
for img_path in image_files: # Iterate through paths in image_files
|
120 |
+
if img_path is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
try:
|
122 |
+
encoded_image = encode_image(img_path) # img_path is already a path
|
123 |
if encoded_image:
|
124 |
+
current_turn_content.append({
|
125 |
"type": "image_url",
|
126 |
"image_url": {
|
127 |
"url": f"data:image/jpeg;base64,{encoded_image}"
|
128 |
}
|
129 |
})
|
130 |
except Exception as e:
|
131 |
+
print(f"Error encoding image for current turn: {e}")
|
132 |
+
|
133 |
+
# If current_turn_content is empty (e.g. only empty text message), use the raw message
|
134 |
+
if not current_turn_content and isinstance(message, str):
|
135 |
+
final_user_content_for_api = message
|
136 |
+
elif not current_turn_content and not isinstance(message, str): # case where message might be complex type but empty
|
137 |
+
final_user_content_for_api = "" # or handle as error
|
138 |
else:
|
139 |
+
final_user_content_for_api = current_turn_content
|
140 |
+
|
141 |
|
142 |
# Prepare messages in the format expected by the API
|
143 |
+
messages_for_api = [{"role": "system", "content": system_message}]
|
144 |
print("Initial messages array constructed.")
|
145 |
|
146 |
# Add conversation history to the context
|
147 |
+
for val in history: # history is list[tuple[str, str]]
|
148 |
+
user_hist_msg_content = val[0] # This is what user typed or image markdown
|
149 |
+
assistant_hist_msg = val[1]
|
150 |
+
|
151 |
+
# Process user history message (could be text or markdown image path)
|
152 |
+
if user_hist_msg_content:
|
153 |
+
# Check if it's an image markdown from history
|
154 |
+
if isinstance(user_hist_msg_content, str) and user_hist_msg_content.startswith(":
|
155 |
+
hist_img_path = user_hist_msg_content.replace(".replace(")", "")
|
156 |
+
encoded_hist_image = encode_image(hist_img_path)
|
157 |
+
if encoded_hist_image:
|
158 |
+
messages_for_api.append({"role": "user", "content": [
|
159 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_hist_image}"}}
|
160 |
+
]})
|
161 |
+
else: # if image encoding fails, maybe send a placeholder or skip
|
162 |
+
messages_for_api.append({"role": "user", "content": "[Image could not be loaded]"})
|
163 |
+
else: # It's a text message from history
|
164 |
+
messages_for_api.append({"role": "user", "content": user_hist_msg_content})
|
165 |
+
print(f"Added user message to API context from history (type: {type(user_hist_msg_content)})")
|
166 |
+
|
167 |
+
if assistant_hist_msg:
|
168 |
+
messages_for_api.append({"role": "assistant", "content": assistant_hist_msg})
|
169 |
+
print(f"Added assistant message to API context from history: {assistant_hist_msg}")
|
170 |
+
|
171 |
+
# Append the latest user message (which now includes images if any for this turn)
|
172 |
+
messages_for_api.append({"role": "user", "content": final_user_content_for_api})
|
173 |
+
print(f"Latest user message appended to API context (content type: {type(final_user_content_for_api)})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
|
|
|
|
|
|
175 |
|
176 |
# Determine which model to use, prioritizing custom_model if provided
|
177 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
178 |
print(f"Model selected for inference: {model_to_use}")
|
179 |
|
180 |
# Start with an empty string to build the response as tokens stream in
|
181 |
+
response_text = ""
|
182 |
print(f"Sending request to {provider} provider.")
|
183 |
|
184 |
# Prepare parameters for the chat completion request
|
|
|
197 |
# Create a generator for the streaming response
|
198 |
stream = client.chat_completion(
|
199 |
model=model_to_use,
|
200 |
+
messages=messages_for_api, # Use the correctly formatted messages
|
201 |
stream=True,
|
202 |
**parameters
|
203 |
)
|
|
|
209 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
210 |
# Extract the content from the response
|
211 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
212 |
+
token_text_chunk = chunk.choices[0].delta.content
|
213 |
+
if token_text_chunk:
|
214 |
+
print(token_text_chunk, end="", flush=True)
|
215 |
+
response_text += token_text_chunk
|
216 |
+
yield response_text
|
217 |
|
218 |
print()
|
219 |
except Exception as e:
|
220 |
print(f"Error during inference: {e}")
|
221 |
+
response_text += f"\nError: {str(e)}"
|
222 |
+
yield response_text
|
223 |
|
224 |
print("Completed response generation.")
|
225 |
|
|
|
306 |
|
307 |
# Provider selection
|
308 |
providers_list = [
|
309 |
+
"hf-inference", "cerebras", "together", "sambanova",
|
310 |
+
"novita", "cohere", "fireworks-ai", "hyperbolic", "nebius",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
]
|
312 |
|
313 |
provider_radio = gr.Radio(
|
314 |
+
choices=providers_list, value="hf-inference", label="Inference Provider",
|
|
|
|
|
315 |
)
|
316 |
|
|
|
317 |
byok_textbox = gr.Textbox(
|
318 |
+
value="", label="BYOK (Bring Your Own Key)",
|
|
|
319 |
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
320 |
+
placeholder="Enter your Hugging Face API token", type="password"
|
|
|
321 |
)
|
322 |
|
|
|
323 |
custom_model_box = gr.Textbox(
|
324 |
+
value="", label="Custom Model",
|
|
|
325 |
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
326 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
327 |
)
|
328 |
|
|
|
329 |
model_search_box = gr.Textbox(
|
330 |
+
label="Filter Models", placeholder="Search for a featured model...", lines=1
|
|
|
|
|
331 |
)
|
332 |
|
|
|
333 |
models_list = [
|
334 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
|
335 |
+
"meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct",
|
336 |
+
"meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
|
337 |
+
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B",
|
338 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "mistralai/Mistral-Nemo-Instruct-2407",
|
339 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
|
340 |
+
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B",
|
341 |
+
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct",
|
342 |
+
"Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct",
|
343 |
+
"microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
]
|
345 |
|
346 |
featured_model_radio = gr.Radio(
|
347 |
+
label="Select a model below", choices=models_list,
|
348 |
+
value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True
|
|
|
|
|
349 |
)
|
350 |
|
351 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
352 |
|
353 |
+
# MCP Support Information
|
354 |
+
with gr.Accordion("MCP Support (for AI Tool Use)", open=False):
|
355 |
gr.Markdown("""
|
356 |
+
### MCP (Model Context Protocol) Enabled
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
This application's text and image generation capability can be used as a tool by MCP-compatible AI models
|
359 |
+
(e.g., certain versions of Claude, Cursor, or custom MCP clients like Tiny Agents).
|
360 |
|
361 |
+
The primary interaction function (`bot`) is exposed as an MCP tool.
|
362 |
+
Provide the conversation history and other parameters as arguments to the tool.
|
363 |
+
For multimodal input, ensure the history correctly references image data that the server can access
|
364 |
+
(Gradio's MCP layer may handle base64 to file conversion if the tool schema indicates file inputs).
|
365 |
+
|
366 |
+
**MCP Server URL:**
|
367 |
+
`https://YOUR_SPACE_NAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse`
|
368 |
+
*(Replace `YOUR_SPACE_NAME` with your Hugging Face username or organization if this is a user space,
|
369 |
+
or the full space name if different. You can find this URL in your browser once the Space is running.)*
|
370 |
|
371 |
+
**Example MCP Client Configuration (`mcp.json` style):**
|
372 |
```json
|
373 |
{
|
374 |
+
"servers": [
|
375 |
+
{
|
376 |
+
"name": "ServerlessTextGenHubTool",
|
377 |
+
"transport": {
|
378 |
+
"type": "sse",
|
379 |
+
"url": "https://YOUR_SPACE_NAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse"
|
380 |
+
}
|
381 |
}
|
382 |
+
]
|
383 |
}
|
384 |
```
|
385 |
+
**Note on Tool Schema:** The exact schema of the MCP tool will be determined by Gradio based on the `bot` function's
|
386 |
+
signature (including type hints) and the Gradio components it interacts with.
|
387 |
+
Refer to the `/gradio_api/mcp/schema` endpoint of your running application for the precise tool definition.
|
388 |
+
For image inputs via MCP, clients should ideally send image URLs or base64 encoded data if the tool's schema supports file types.
|
389 |
+
Gradio's MCP layer attempts to handle file data conversions.
|
|
|
|
|
|
|
390 |
""")
|
391 |
|
392 |
# Chat history state
|
393 |
+
chat_history = gr.State([]) # Not directly used, chatbot component handles its state internally
|
394 |
|
395 |
# Function to filter models
|
396 |
+
def filter_models(search_term: str):
|
397 |
print(f"Filtering models with search term: {search_term}")
|
398 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
399 |
print(f"Filtered models: {filtered}")
|
400 |
+
return gr.update(choices=filtered if filtered else models_list, value=featured_model_radio.value if filtered and featured_model_radio.value in filtered else (filtered[0] if filtered else models_list[0]))
|
401 |
|
402 |
# Function to set custom model from radio
|
403 |
+
def set_custom_model_from_radio(selected: str):
|
404 |
print(f"Featured model selected: {selected}")
|
405 |
+
# This function now directly returns the selected model to update custom_model_box
|
406 |
+
# If custom_model_box is meant to override, this keeps them in sync until user types in custom_model_box
|
407 |
return selected
|
408 |
|
409 |
+
|
410 |
+
# Function for the chat interface (user's turn)
|
411 |
+
def user(user_message_input: dict, history: list[list[str | None]]):
|
412 |
+
print(f"User input (raw from MultimodalTextbox): {user_message_input}")
|
|
|
|
|
|
|
413 |
|
414 |
+
text_content = user_message_input.get("text", "").strip()
|
415 |
+
files = user_message_input.get("files", []) # List of temp file paths
|
416 |
|
417 |
+
print(f"Parsed text content: '{text_content}'")
|
418 |
+
print(f"Parsed files: {files}")
|
419 |
|
420 |
+
# Append text message to history if present
|
|
|
|
|
|
|
|
|
421 |
if text_content:
|
|
|
422 |
history.append([text_content, None])
|
423 |
+
print(f"Appended text to history: {text_content}")
|
424 |
+
|
425 |
+
# Append image messages to history
|
426 |
if files:
|
427 |
for file_path in files:
|
428 |
+
if file_path and isinstance(file_path, str): # file_path is a temp path from Gradio
|
429 |
+
# Embed image as markdown link in history for display
|
430 |
+
# The actual file path is used by `respond` via `bot`
|
431 |
+
history.append([f"", None])
|
432 |
+
print(f"Appended image to history: {file_path}")
|
433 |
+
|
434 |
+
# If neither text nor files, don't add an empty turn
|
435 |
+
if not text_content and not files:
|
436 |
+
print("Empty input, no change to history.")
|
437 |
+
return history # Return current history as is
|
438 |
+
|
439 |
return history
|
440 |
|
441 |
# Define bot response function
|
442 |
+
def bot(
|
443 |
+
history: list[list[str | None]], # Type hint for history
|
444 |
+
system_msg: str,
|
445 |
+
max_tokens: int,
|
446 |
+
temperature: float,
|
447 |
+
top_p: float,
|
448 |
+
freq_penalty: float,
|
449 |
+
seed: int,
|
450 |
+
provider: str,
|
451 |
+
api_key: str,
|
452 |
+
custom_model: str,
|
453 |
+
# model_search_term: str, # This argument comes from model_search_box
|
454 |
+
selected_model: str # This argument comes from featured_model_radio
|
455 |
+
):
|
456 |
+
"""
|
457 |
+
Processes user input from the chat history, calls the language model via the 'respond'
|
458 |
+
function, and streams the bot's response back to update the chat history.
|
459 |
+
This function is intended to be exposed as an MCP tool.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
history (list[list[str | None]]): The conversation history.
|
463 |
+
Each item is [user_message, bot_message].
|
464 |
+
User messages can be text or markdown image paths like "".
|
465 |
+
system_msg (str): The system prompt.
|
466 |
+
max_tokens (int): Maximum number of tokens to generate.
|
467 |
+
temperature (float): Sampling temperature for generation.
|
468 |
+
top_p (float): Top-P (nucleus) sampling probability.
|
469 |
+
freq_penalty (float): Frequency penalty for generation.
|
470 |
+
seed (int): Random seed for generation (-1 for random).
|
471 |
+
provider (str): The inference provider to use.
|
472 |
+
api_key (str): Custom API key, if provided by the user.
|
473 |
+
custom_model (str): Custom model path/ID. If empty, selected_model is used.
|
474 |
+
selected_model (str): The model selected from the featured list.
|
475 |
+
|
476 |
+
Yields:
|
477 |
+
list[list[str | None]]: The updated chat history with the bot's streaming response.
|
478 |
+
"""
|
479 |
+
print(f"Bot function called. History: {history}")
|
480 |
+
if not history or history[-1][0] is None: # Check if last user message is None
|
481 |
+
print("No user message in the last history turn to process.")
|
482 |
+
# yield history # removed to avoid issues with Gradio expecting a specific sequence
|
483 |
+
return # Or raise an error, or handle appropriately
|
484 |
+
|
485 |
+
# The last user message is history[-1][0]
|
486 |
+
# The bot's response will go into history[-1][1]
|
487 |
+
|
488 |
+
user_turn_content = history[-1][0]
|
489 |
+
current_turn_text_message = ""
|
490 |
+
current_turn_image_paths = []
|
491 |
+
|
492 |
+
# Check if the last user message in history is an image markdown
|
493 |
+
if isinstance(user_turn_content, str) and user_turn_content.startswith(":
|
494 |
+
# This is an image message
|
495 |
+
img_path = user_turn_content.replace(".replace(")", "")
|
496 |
+
current_turn_image_paths.append(img_path)
|
497 |
+
# Check if there was a text message immediately preceding this image in the same "turn"
|
498 |
+
# This requires looking at how `user` function structures history.
|
499 |
+
# `user` adds text and images as separate entries in history.
|
500 |
+
# So, if history[-1][0] is an image, history[-2][0] might be related text IF it was part of the same multimodal input.
|
501 |
+
# This logic becomes complex. Simpler: assume each history entry is distinct.
|
502 |
+
# For MCP, it's better if the client structures the call to `bot` clearly.
|
503 |
+
print(f"Processing image from history: {img_path}")
|
504 |
+
elif isinstance(user_turn_content, str):
|
505 |
+
# This is a text message
|
506 |
+
current_turn_text_message = user_turn_content
|
507 |
+
print(f"Processing text from history: {current_turn_text_message}")
|
508 |
+
else:
|
509 |
+
print(f"Unexpected content in history user turn: {user_turn_content}")
|
510 |
+
# yield history # removed
|
511 |
return
|
512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
+
history[-1][1] = "" # Initialize bot response field for the current turn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
+
# Call the 'respond' function.
|
517 |
+
# History for 'respond' should be prior turns, not including the current user message being processed.
|
518 |
+
history_for_respond = history[:-1]
|
519 |
+
|
520 |
for response_chunk in respond(
|
521 |
+
message=current_turn_text_message, # Text part of current turn
|
522 |
+
image_files=current_turn_image_paths, # Image paths of current turn
|
523 |
+
history=history_for_respond, # History up to the previous turn
|
524 |
system_message=system_msg,
|
525 |
max_tokens=max_tokens,
|
526 |
temperature=temperature,
|
|
|
530 |
provider=provider,
|
531 |
custom_api_key=api_key,
|
532 |
custom_model=custom_model,
|
533 |
+
model_search_term="", # Not directly used by respond's core logic here
|
534 |
selected_model=selected_model
|
535 |
):
|
536 |
+
history[-1][1] = response_chunk # Update bot response in the current turn
|
537 |
yield history
|
538 |
|
|
|
539 |
# Event handlers
|
540 |
+
# The parameters to `bot` must match the order of inputs list
|
541 |
msg.submit(
|
542 |
user,
|
543 |
[msg, chatbot],
|
|
|
547 |
bot,
|
548 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
549 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
550 |
+
# model_search_box, # Removed from bot inputs as it's UI only
|
551 |
+
featured_model_radio],
|
552 |
[chatbot]
|
553 |
).then(
|
554 |
+
lambda: {"text": "", "files": []},
|
555 |
None,
|
556 |
[msg]
|
557 |
)
|
558 |
|
559 |
model_search_box.change(
|
560 |
+
fn=filter_models, inputs=model_search_box, outputs=featured_model_radio
|
|
|
|
|
561 |
)
|
562 |
print("Model search box change event linked.")
|
563 |
|
564 |
featured_model_radio.change(
|
565 |
+
fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box
|
|
|
|
|
566 |
)
|
567 |
print("Featured model radio button change event linked.")
|
568 |
|
569 |
byok_textbox.change(
|
570 |
+
fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio
|
|
|
|
|
571 |
)
|
572 |
print("BYOK textbox change event linked.")
|
573 |
|
574 |
provider_radio.change(
|
575 |
+
fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio
|
|
|
|
|
576 |
)
|
577 |
print("Provider radio button change event linked.")
|
578 |
|
|
|
580 |
|
581 |
if __name__ == "__main__":
|
582 |
print("Launching the demo application.")
|
583 |
+
# Added mcp_server=True
|
584 |
+
demo.launch(show_api=True, mcp_server=True)
|