Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,40 +5,47 @@ import json
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
-
import requests
|
9 |
-
from smolagents.mcp_client import MCPClient
|
10 |
|
11 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
# Function to encode image to base64
|
15 |
-
def encode_image(
|
16 |
-
if not
|
17 |
-
print("No image path provided")
|
18 |
return None
|
19 |
|
20 |
try:
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
image
|
|
|
|
|
|
|
|
|
26 |
else:
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
# Convert to RGB if image has an alpha channel (RGBA)
|
31 |
if image.mode == 'RGBA':
|
32 |
image = image.convert('RGB')
|
33 |
|
34 |
-
# Encode to base64
|
35 |
buffered = io.BytesIO()
|
36 |
-
image.save(buffered, format="JPEG")
|
37 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
38 |
-
print("Image encoded successfully")
|
39 |
return img_str
|
40 |
except Exception as e:
|
41 |
print(f"Error encoding image: {e}")
|
|
|
|
|
42 |
return None
|
43 |
|
44 |
# Dictionary to store active MCP connections
|
@@ -47,827 +54,606 @@ mcp_connections = {}
|
|
47 |
def connect_to_mcp_server(server_url, server_name=None):
|
48 |
"""Connect to an MCP server and return available tools"""
|
49 |
if not server_url:
|
50 |
-
return None, "No server URL provided"
|
51 |
|
52 |
try:
|
53 |
-
|
54 |
-
client = MCPClient({"url": server_url})
|
55 |
-
#
|
56 |
-
tools = client.get_tools()
|
57 |
|
58 |
-
|
59 |
-
name = server_name or f"Server_{len(mcp_connections)}"
|
60 |
mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
|
61 |
|
62 |
-
|
|
|
63 |
except Exception as e:
|
64 |
-
print(f"Error connecting to MCP server: {e}")
|
65 |
-
|
|
|
|
|
66 |
|
67 |
def list_mcp_tools(server_name):
|
68 |
"""List available tools for a connected MCP server"""
|
69 |
if server_name not in mcp_connections:
|
70 |
-
return "Server not connected"
|
71 |
|
72 |
tools = mcp_connections[server_name]["tools"]
|
73 |
tool_info = []
|
74 |
for tool in tools:
|
75 |
-
tool_info.append(f"- {tool.name}
|
76 |
|
77 |
if not tool_info:
|
78 |
-
return "No tools available for this server"
|
79 |
|
80 |
return "\n".join(tool_info)
|
81 |
|
82 |
def call_mcp_tool(server_name, tool_name, **kwargs):
|
83 |
-
"""Call a specific tool from an MCP server"""
|
84 |
if server_name not in mcp_connections:
|
85 |
-
return f"Server '{server_name}' not connected"
|
86 |
-
|
87 |
-
client = mcp_connections[server_name]["client"]
|
88 |
-
tools = mcp_connections[server_name]["tools"]
|
89 |
|
90 |
-
|
91 |
-
tool = next((t for t in tools if t.name == tool_name), None)
|
92 |
-
if not tool:
|
93 |
-
return f"Tool '{tool_name}' not found on server '{server_name}'"
|
94 |
|
95 |
try:
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
-
print(f"Error calling MCP tool: {e}")
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
def analyze_message_for_tool_call(message, active_mcp_servers,
|
104 |
"""Analyze a message to determine if an MCP tool should be called"""
|
105 |
-
|
106 |
-
if not message or not message.strip():
|
107 |
return None, None
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
server_tools = mcp_connections[server_name]["tools"]
|
114 |
for tool in server_tools:
|
115 |
-
|
116 |
-
|
117 |
-
"
|
118 |
-
|
119 |
-
})
|
120 |
|
121 |
-
if not
|
|
|
122 |
return None, None
|
123 |
|
124 |
-
|
125 |
-
tools_desc = []
|
126 |
-
for info in tool_info:
|
127 |
-
tools_desc.append(f"{info['server_name']}.{info['tool_name']}: {info['description']}")
|
128 |
-
|
129 |
-
tools_string = "\n".join(tools_desc)
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
try:
|
150 |
-
|
151 |
-
response =
|
152 |
-
model=
|
153 |
messages=[
|
154 |
-
{"role": "system", "content":
|
155 |
-
{"role": "user", "content": message
|
156 |
],
|
157 |
-
temperature=0.
|
158 |
-
max_tokens=300
|
|
|
159 |
)
|
160 |
|
161 |
-
|
162 |
-
print(f"
|
163 |
|
164 |
-
if "NO_TOOL_NEEDED" in
|
|
|
165 |
return None, None
|
166 |
|
167 |
-
# Try to extract JSON from the response
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
if json_start
|
|
|
172 |
return None, None
|
173 |
|
174 |
-
json_str =
|
175 |
try:
|
176 |
-
|
177 |
-
|
178 |
-
"
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
183 |
return None, None
|
184 |
|
185 |
except Exception as e:
|
186 |
-
print(f"Error
|
|
|
|
|
187 |
return None, None
|
188 |
|
189 |
def respond(
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
):
|
208 |
-
print(f"
|
209 |
-
print(f"
|
210 |
-
print(f"
|
211 |
-
print(f"
|
212 |
-
print(f"
|
213 |
-
print(f"
|
214 |
-
print(f"
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
print(f"Active MCP servers: {active_mcp_servers}")
|
221 |
-
print(f"MCP interaction mode: {mcp_interaction_mode}")
|
222 |
-
|
223 |
-
# Determine which token to use
|
224 |
-
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
225 |
|
226 |
-
|
227 |
-
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
228 |
-
else:
|
229 |
-
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
print(f"
|
234 |
-
|
235 |
-
#
|
236 |
-
if
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
if mcp_enabled and message:
|
245 |
-
if message.startswith("/mcp"): # Always handle explicit commands
|
246 |
-
# Handle MCP command
|
247 |
-
command_parts = message.split(" ", 3)
|
248 |
if len(command_parts) < 3:
|
249 |
-
|
|
|
250 |
|
251 |
-
_,
|
252 |
-
|
|
|
|
|
253 |
|
254 |
try:
|
255 |
-
|
256 |
-
|
257 |
-
if isinstance(result, dict):
|
258 |
-
return json.dumps(result, indent=2)
|
259 |
-
return str(result)
|
260 |
except json.JSONDecodeError:
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
272 |
)
|
273 |
|
274 |
-
if
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
else:
|
284 |
-
result_str = str(result)
|
285 |
-
|
286 |
-
return f"I used the {tool_info['tool_name']} tool from {server_name} with your request.\n\nResult:\n{result_str}"
|
287 |
-
except Exception as e:
|
288 |
-
print(f"Error executing MCP tool via natural language: {str(e)}")
|
289 |
-
# Continue with normal response if tool call fails
|
290 |
-
|
291 |
-
# Create multimodal content if images are present
|
292 |
-
if image_files and len(image_files) > 0:
|
293 |
-
# Process the user message to include images
|
294 |
-
user_content = []
|
295 |
-
|
296 |
-
# Add text part if there is any
|
297 |
-
if message and message.strip():
|
298 |
-
user_content.append({
|
299 |
-
"type": "text",
|
300 |
-
"text": message
|
301 |
-
})
|
302 |
-
|
303 |
-
# Add image parts
|
304 |
-
for img in image_files:
|
305 |
-
if img is not None:
|
306 |
-
# Get raw image data from path
|
307 |
-
try:
|
308 |
-
encoded_image = encode_image(img)
|
309 |
-
if encoded_image:
|
310 |
-
user_content.append({
|
311 |
-
"type": "image_url",
|
312 |
-
"image_url": {
|
313 |
-
"url": f"data:image/jpeg;base64,{encoded_image}"
|
314 |
-
}
|
315 |
-
})
|
316 |
-
except Exception as e:
|
317 |
-
print(f"Error encoding image: {e}")
|
318 |
-
else:
|
319 |
-
# Text-only message
|
320 |
-
user_content = message
|
321 |
-
|
322 |
-
# Add information about available MCP tools to the system message if MCP is enabled
|
323 |
-
augmented_system_message = system_message
|
324 |
-
if mcp_enabled and active_mcp_servers:
|
325 |
-
tool_info = []
|
326 |
-
for server_name in active_mcp_servers:
|
327 |
-
if server_name in mcp_connections:
|
328 |
-
server_tools = list_mcp_tools(server_name).split("\n")
|
329 |
-
tool_info.extend([f"{server_name}: {tool}" for tool in server_tools])
|
330 |
-
|
331 |
-
if tool_info:
|
332 |
-
mcp_tools_description = "\n".join(tool_info)
|
333 |
|
334 |
-
if
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
if user_part:
|
348 |
-
# Handle both text-only and multimodal messages in history
|
349 |
-
if isinstance(user_part, tuple) and len(user_part) == 2:
|
350 |
-
# This is a multimodal message with text and images
|
351 |
-
history_content = []
|
352 |
-
if user_part[0]: # Text
|
353 |
-
history_content.append({
|
354 |
-
"type": "text",
|
355 |
-
"text": user_part[0]
|
356 |
})
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
-
if
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
#
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
print(f"Model selected for inference: {model_to_use}")
|
389 |
-
|
390 |
-
# Start with an empty string to build the response as tokens stream in
|
391 |
-
response = ""
|
392 |
-
print(f"Sending request to {provider} provider.")
|
393 |
-
|
394 |
-
# Prepare parameters for the chat completion request
|
395 |
-
parameters = {
|
396 |
-
"max_tokens": max_tokens,
|
397 |
-
"temperature": temperature,
|
398 |
-
"top_p": top_p,
|
399 |
-
"frequency_penalty": frequency_penalty,
|
400 |
}
|
401 |
-
|
402 |
-
|
403 |
-
parameters["seed"] = seed
|
404 |
|
405 |
-
|
|
|
406 |
try:
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
messages=messages,
|
411 |
stream=True,
|
412 |
-
**
|
413 |
)
|
414 |
|
415 |
-
print("
|
416 |
-
|
417 |
-
# Process the streaming response
|
418 |
-
for chunk in stream:
|
419 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
420 |
-
|
421 |
-
if hasattr(
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
|
|
433 |
|
434 |
-
print("Completed response generation.")
|
435 |
|
436 |
# GRADIO UI
|
437 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
438 |
-
#
|
439 |
chatbot = gr.Chatbot(
|
|
|
440 |
height=600,
|
441 |
show_copy_button=True,
|
442 |
-
placeholder="Select a model
|
443 |
-
|
444 |
-
|
445 |
-
print("Chatbot interface created.")
|
446 |
-
|
447 |
-
# Multimodal textbox for messages (combines text and file uploads)
|
448 |
-
msg = gr.MultimodalTextbox(
|
449 |
-
placeholder="Type a message or upload images...",
|
450 |
-
show_label=False,
|
451 |
-
container=False,
|
452 |
-
scale=12,
|
453 |
-
file_types=["image"],
|
454 |
-
file_count="multiple",
|
455 |
-
sources=["upload"]
|
456 |
)
|
457 |
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
)
|
466 |
|
467 |
-
# Generation parameters
|
468 |
with gr.Row():
|
469 |
-
with gr.Column():
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
maximum=4.0,
|
481 |
-
value=0.7,
|
482 |
-
step=0.1,
|
483 |
-
label="Temperature"
|
484 |
-
)
|
485 |
-
|
486 |
-
top_p_slider = gr.Slider(
|
487 |
-
minimum=0.1,
|
488 |
-
maximum=1.0,
|
489 |
-
value=0.95,
|
490 |
-
step=0.05,
|
491 |
-
label="Top-P"
|
492 |
-
)
|
493 |
-
|
494 |
-
with gr.Column():
|
495 |
-
frequency_penalty_slider = gr.Slider(
|
496 |
-
minimum=-2.0,
|
497 |
-
maximum=2.0,
|
498 |
-
value=0.0,
|
499 |
-
step=0.1,
|
500 |
-
label="Frequency Penalty"
|
501 |
-
)
|
502 |
-
|
503 |
-
seed_slider = gr.Slider(
|
504 |
-
minimum=-1,
|
505 |
-
maximum=65535,
|
506 |
-
value=-1,
|
507 |
-
step=1,
|
508 |
-
label="Seed (-1 for random)"
|
509 |
-
)
|
510 |
-
|
511 |
-
# Provider selection
|
512 |
-
providers_list = [
|
513 |
-
"hf-inference", # Default Hugging Face Inference
|
514 |
-
"cerebras", # Cerebras provider
|
515 |
-
"together", # Together AI
|
516 |
-
"sambanova", # SambaNova
|
517 |
-
"novita", # Novita AI
|
518 |
-
"cohere", # Cohere
|
519 |
-
"fireworks-ai", # Fireworks AI
|
520 |
-
"hyperbolic", # Hyperbolic
|
521 |
-
"nebius", # Nebius
|
522 |
]
|
|
|
523 |
|
524 |
-
|
525 |
-
choices=providers_list,
|
526 |
-
value="hf-inference",
|
527 |
-
label="Inference Provider",
|
528 |
-
)
|
529 |
|
530 |
-
|
531 |
-
byok_textbox = gr.Textbox(
|
532 |
-
value="",
|
533 |
-
label="BYOK (Bring Your Own Key)",
|
534 |
-
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
535 |
-
placeholder="Enter your Hugging Face API token",
|
536 |
-
type="password" # Hide the API key for security
|
537 |
-
)
|
538 |
|
539 |
-
|
540 |
-
custom_model_box = gr.Textbox(
|
541 |
-
value="",
|
542 |
-
label="Custom Model",
|
543 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
544 |
-
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
545 |
-
)
|
546 |
|
547 |
-
#
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
lines=1
|
552 |
-
)
|
553 |
-
|
554 |
-
# Featured models list
|
555 |
-
# Updated to include multimodal models
|
556 |
-
models_list = [
|
557 |
-
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
558 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
559 |
-
"meta-llama/Llama-3.1-70B-Instruct",
|
560 |
-
"meta-llama/Llama-3.0-70B-Instruct",
|
561 |
-
"meta-llama/Llama-3.2-3B-Instruct",
|
562 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
563 |
-
"meta-llama/Llama-3.1-8B-Instruct",
|
564 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
565 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
566 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
567 |
-
"mistralai/Mixtral-
|
568 |
-
"
|
569 |
-
"
|
570 |
-
|
571 |
-
"
|
572 |
-
"
|
573 |
-
"
|
574 |
-
"
|
575 |
-
"Qwen/QwQ-32B",
|
576 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
577 |
-
"microsoft/Phi-3.5-mini-instruct",
|
578 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
579 |
-
"microsoft/Phi-3-mini-4k-instruct",
|
580 |
]
|
581 |
-
|
582 |
-
featured_model_radio = gr.Radio(
|
583 |
-
label="Select a model below",
|
584 |
-
choices=models_list,
|
585 |
-
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
|
586 |
-
interactive=True
|
587 |
-
)
|
588 |
|
589 |
-
gr.Markdown("
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
mcp_enabled_checkbox = gr.Checkbox(
|
594 |
-
label="Enable MCP Support",
|
595 |
-
value=False,
|
596 |
-
info="Enable Model Context Protocol support to connect to external tools and services"
|
597 |
-
)
|
598 |
|
599 |
with gr.Row():
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
info="URL of the MCP server to connect to"
|
604 |
-
)
|
605 |
-
|
606 |
-
mcp_server_name = gr.Textbox(
|
607 |
-
label="Server Name",
|
608 |
-
placeholder="Optional name for this server",
|
609 |
-
info="A friendly name to identify this server"
|
610 |
-
)
|
611 |
-
|
612 |
-
mcp_connect_button = gr.Button("Connect to MCP Server")
|
613 |
|
614 |
-
|
615 |
-
label="MCP Connection Status",
|
616 |
-
placeholder="No MCP servers connected",
|
617 |
-
interactive=False
|
618 |
-
)
|
619 |
|
620 |
-
|
621 |
-
label="Active MCP Servers",
|
622 |
-
|
623 |
-
multiselect=True,
|
624 |
-
info="Select which MCP servers to use in chat"
|
625 |
)
|
626 |
|
627 |
-
|
628 |
-
label="MCP Interaction Mode",
|
629 |
-
|
630 |
-
value="Natural Language",
|
631 |
-
info="Choose how to interact with MCP tools"
|
632 |
)
|
633 |
-
|
634 |
-
gr.Markdown("""
|
635 |
-
### MCP Interaction Modes
|
636 |
-
|
637 |
-
**Natural Language Mode**: Simply describe what you want in plain English. Examples:
|
638 |
-
```
|
639 |
-
Please convert the text "Hello world" to speech
|
640 |
-
Can you read this text aloud: "Welcome to MCP integration"
|
641 |
-
```
|
642 |
-
|
643 |
-
**Command Mode**: Use structured commands (for advanced users)
|
644 |
-
```
|
645 |
-
/mcp <server_name> <tool_name> {"param1": "value1", "param2": "value2"}
|
646 |
-
```
|
647 |
-
|
648 |
-
Example:
|
649 |
-
```
|
650 |
-
/mcp kokoroTTS text_to_audio {"text": "Hello world", "speed": 1.0}
|
651 |
-
```
|
652 |
-
""")
|
653 |
-
|
654 |
-
# Chat history state
|
655 |
-
chat_history = gr.State([])
|
656 |
-
|
657 |
-
# Function to filter models
|
658 |
-
def filter_models(search_term):
|
659 |
-
print(f"Filtering models with search term: {search_term}")
|
660 |
-
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
661 |
-
print(f"Filtered models: {filtered}")
|
662 |
-
return gr.update(choices=filtered)
|
663 |
-
|
664 |
-
# Function to set custom model from radio
|
665 |
-
def set_custom_model_from_radio(selected):
|
666 |
-
print(f"Featured model selected: {selected}")
|
667 |
-
return selected
|
668 |
-
|
669 |
-
# Function to connect to MCP server
|
670 |
-
def connect_mcp_server(url, name):
|
671 |
-
server_name, status = connect_to_mcp_server(url, name)
|
672 |
-
|
673 |
-
# Update the active servers dropdown
|
674 |
-
servers = list(mcp_connections.keys())
|
675 |
-
|
676 |
-
# Return the status message and updated server list
|
677 |
-
return status, gr.update(choices=servers)
|
678 |
|
679 |
-
#
|
680 |
-
def user(user_message, history):
|
681 |
-
# Debug logging for troubleshooting
|
682 |
-
print(f"User message received: {user_message}")
|
683 |
-
|
684 |
-
# Skip if message is empty (no text and no files)
|
685 |
-
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
686 |
-
print("Empty message, skipping")
|
687 |
-
return history
|
688 |
-
|
689 |
-
# Prepare multimodal message format
|
690 |
-
text_content = user_message.get("text", "").strip()
|
691 |
-
files = user_message.get("files", [])
|
692 |
-
|
693 |
-
print(f"Text content: {text_content}")
|
694 |
-
print(f"Files: {files}")
|
695 |
-
|
696 |
-
# If both text and files are empty, skip
|
697 |
-
if not text_content and not files:
|
698 |
-
print("No content to display")
|
699 |
-
return history
|
700 |
-
|
701 |
-
# Add message with images to history
|
702 |
-
if files and len(files) > 0:
|
703 |
-
# Add text message first if it exists
|
704 |
-
if text_content:
|
705 |
-
# Add a separate text message
|
706 |
-
print(f"Adding text message: {text_content}")
|
707 |
-
history.append([text_content, None])
|
708 |
-
|
709 |
-
# Then add each image file separately
|
710 |
-
for file_path in files:
|
711 |
-
if file_path and isinstance(file_path, str):
|
712 |
-
print(f"Adding image: {file_path}")
|
713 |
-
# Add image as a separate message with no text
|
714 |
-
history.append([f"", None])
|
715 |
-
|
716 |
-
return history
|
717 |
-
else:
|
718 |
-
# For text-only messages
|
719 |
-
print(f"Adding text-only message: {text_content}")
|
720 |
-
history.append([text_content, None])
|
721 |
-
return history
|
722 |
|
723 |
-
#
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
#
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
#
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
history[-1][1] = ""
|
757 |
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
[image_path], # Current image
|
764 |
-
history[:-1], # Previous history
|
765 |
-
system_msg,
|
766 |
-
max_tokens,
|
767 |
-
temperature,
|
768 |
-
top_p,
|
769 |
-
freq_penalty,
|
770 |
-
seed,
|
771 |
-
provider,
|
772 |
-
api_key,
|
773 |
-
custom_model,
|
774 |
-
search_term,
|
775 |
-
selected_model,
|
776 |
-
mcp_enabled,
|
777 |
-
selected_servers,
|
778 |
-
mcp_interaction_mode
|
779 |
-
):
|
780 |
-
history[-1][1] = response
|
781 |
-
yield history
|
782 |
-
else:
|
783 |
-
# For text-only messages
|
784 |
-
for response in respond(
|
785 |
-
text_content, # Text message
|
786 |
-
None, # No image
|
787 |
-
history[:-1], # Previous history
|
788 |
-
system_msg,
|
789 |
-
max_tokens,
|
790 |
-
temperature,
|
791 |
-
top_p,
|
792 |
-
freq_penalty,
|
793 |
-
seed,
|
794 |
-
provider,
|
795 |
-
api_key,
|
796 |
-
custom_model,
|
797 |
-
search_term,
|
798 |
-
selected_model,
|
799 |
-
mcp_enabled,
|
800 |
-
selected_servers,
|
801 |
-
mcp_interaction_mode
|
802 |
-
):
|
803 |
-
history[-1][1] = response
|
804 |
-
yield history
|
805 |
-
|
806 |
-
# Update function for provider validation based on BYOK
|
807 |
-
def validate_provider(api_key, provider):
|
808 |
-
if not api_key.strip() and provider != "hf-inference":
|
809 |
-
return gr.update(value="hf-inference")
|
810 |
-
return gr.update(value=provider)
|
811 |
-
|
812 |
-
# Event handlers
|
813 |
-
msg.submit(
|
814 |
-
user,
|
815 |
-
[msg, chatbot],
|
816 |
-
[chatbot],
|
817 |
-
queue=False
|
818 |
-
).then(
|
819 |
-
bot,
|
820 |
-
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
821 |
-
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
822 |
-
model_search_box, featured_model_radio, mcp_enabled_checkbox, active_mcp_servers, mcp_mode],
|
823 |
-
[chatbot]
|
824 |
-
).then(
|
825 |
-
lambda: {"text": "", "files": []}, # Clear inputs after submission
|
826 |
-
None,
|
827 |
-
[msg]
|
828 |
-
)
|
829 |
-
|
830 |
-
# Connect MCP connect button
|
831 |
-
mcp_connect_button.click(
|
832 |
-
connect_mcp_server,
|
833 |
-
[mcp_server_url, mcp_server_name],
|
834 |
-
[mcp_status, active_mcp_servers]
|
835 |
-
)
|
836 |
|
837 |
-
#
|
838 |
-
|
839 |
-
|
840 |
-
inputs=
|
841 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
842 |
)
|
843 |
-
print("Model search box change event linked.")
|
844 |
|
845 |
-
#
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
|
|
|
|
|
|
|
|
858 |
)
|
859 |
-
print("BYOK textbox change event linked.")
|
860 |
|
861 |
-
#
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
|
869 |
-
print("Gradio interface initialized.")
|
870 |
|
871 |
if __name__ == "__main__":
|
872 |
-
print("Launching
|
873 |
-
demo.launch(
|
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
import requests # Keep for potential future use, though not directly used in core logic now
|
9 |
+
from smolagents.mcp_client import MCPClient # Ensure this is correctly installed and importable
|
10 |
|
11 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
12 |
+
if ACCESS_TOKEN:
|
13 |
+
print("Access token loaded from HF_TOKEN environment variable.")
|
14 |
+
else:
|
15 |
+
print("Warning: HF_TOKEN environment variable not set. Some operations might fail.")
|
16 |
|
17 |
# Function to encode image to base64
|
18 |
+
def encode_image(image_path_or_pil):
|
19 |
+
if not image_path_or_pil:
|
20 |
+
print("No image path or PIL Image provided")
|
21 |
return None
|
22 |
|
23 |
try:
|
24 |
+
if isinstance(image_path_or_pil, Image.Image):
|
25 |
+
image = image_path_or_pil
|
26 |
+
print(f"Encoding PIL Image object.")
|
27 |
+
elif isinstance(image_path_or_pil, str):
|
28 |
+
print(f"Encoding image from path: {image_path_or_pil}")
|
29 |
+
if not os.path.exists(image_path_or_pil):
|
30 |
+
print(f"Error: Image file not found at {image_path_or_pil}")
|
31 |
+
return None
|
32 |
+
image = Image.open(image_path_or_pil)
|
33 |
else:
|
34 |
+
print(f"Error: Unsupported image input type: {type(image_path_or_pil)}")
|
35 |
+
return None
|
36 |
|
|
|
37 |
if image.mode == 'RGBA':
|
38 |
image = image.convert('RGB')
|
39 |
|
|
|
40 |
buffered = io.BytesIO()
|
41 |
+
image.save(buffered, format="JPEG") # Or PNG if preferred, ensure consistency
|
42 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
43 |
+
print("Image encoded successfully to base64.")
|
44 |
return img_str
|
45 |
except Exception as e:
|
46 |
print(f"Error encoding image: {e}")
|
47 |
+
import traceback
|
48 |
+
traceback.print_exc()
|
49 |
return None
|
50 |
|
51 |
# Dictionary to store active MCP connections
|
|
|
54 |
def connect_to_mcp_server(server_url, server_name=None):
|
55 |
"""Connect to an MCP server and return available tools"""
|
56 |
if not server_url:
|
57 |
+
return None, "No server URL provided. Please enter a valid URL."
|
58 |
|
59 |
try:
|
60 |
+
print(f"Attempting to connect to MCP server at URL: {server_url}")
|
61 |
+
client = MCPClient({"url": server_url}) # This might block or raise if connection fails
|
62 |
+
tools = client.get_tools() # This should also be a blocking call until tools are fetched
|
|
|
63 |
|
64 |
+
name = server_name.strip() if server_name and server_name.strip() else f"Server_{len(mcp_connections) + 1}"
|
|
|
65 |
mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
|
66 |
|
67 |
+
print(f"Successfully connected to MCP server: {name} with {len(tools)} tools.")
|
68 |
+
return name, f"Successfully connected to '{name}' ({server_url}). Found {len(tools)} tool(s)."
|
69 |
except Exception as e:
|
70 |
+
print(f"Error connecting to MCP server at {server_url}: {e}")
|
71 |
+
import traceback
|
72 |
+
traceback.print_exc()
|
73 |
+
return None, f"Error connecting to MCP server '{server_url}': {str(e)}"
|
74 |
|
75 |
def list_mcp_tools(server_name):
|
76 |
"""List available tools for a connected MCP server"""
|
77 |
if server_name not in mcp_connections:
|
78 |
+
return "Server not connected or name not found."
|
79 |
|
80 |
tools = mcp_connections[server_name]["tools"]
|
81 |
tool_info = []
|
82 |
for tool in tools:
|
83 |
+
tool_info.append(f"- **{tool.name}**: {tool.description}")
|
84 |
|
85 |
if not tool_info:
|
86 |
+
return "No tools available for this server."
|
87 |
|
88 |
return "\n".join(tool_info)
|
89 |
|
90 |
def call_mcp_tool(server_name, tool_name, **kwargs):
|
91 |
+
"""Call a specific tool from an MCP server and process its result."""
|
92 |
if server_name not in mcp_connections:
|
93 |
+
return {"type": "error", "message": f"Server '{server_name}' not connected."}
|
|
|
|
|
|
|
94 |
|
95 |
+
mcp_client_instance = mcp_connections[server_name]["client"]
|
|
|
|
|
|
|
96 |
|
97 |
try:
|
98 |
+
print(f"Calling MCP tool: {server_name}.{tool_name} with args: {kwargs}")
|
99 |
+
# Assuming mcp_client_instance.call_tool returns an mcp.client.tool.ToolResult object
|
100 |
+
tool_result = mcp_client_instance.call_tool(tool_name, kwargs)
|
101 |
+
|
102 |
+
if tool_result and tool_result.content:
|
103 |
+
# Process multiple blocks if present, concatenating text or prioritizing audio
|
104 |
+
audio_block_found = None
|
105 |
+
text_parts = []
|
106 |
+
json_parts = []
|
107 |
+
other_parts = []
|
108 |
+
|
109 |
+
for block in tool_result.content:
|
110 |
+
if hasattr(block, 'uri') and isinstance(block.uri, str) and block.uri.startswith('data:audio/'):
|
111 |
+
audio_block_found = {
|
112 |
+
"type": "audio",
|
113 |
+
"data_uri": block.uri,
|
114 |
+
"name": getattr(block, 'name', 'audio_output.wav')
|
115 |
+
}
|
116 |
+
break # Prioritize first audio block
|
117 |
+
elif hasattr(block, 'text') and block.text is not None:
|
118 |
+
text_parts.append(str(block.text))
|
119 |
+
elif hasattr(block, 'json_data') and block.json_data is not None:
|
120 |
+
try:
|
121 |
+
json_parts.append(json.dumps(block.json_data, indent=2))
|
122 |
+
except TypeError:
|
123 |
+
json_parts.append(str(block.json_data)) # Fallback
|
124 |
+
else:
|
125 |
+
other_parts.append(str(block))
|
126 |
+
|
127 |
+
if audio_block_found:
|
128 |
+
print(f"MCP tool returned audio: {audio_block_found['name']}")
|
129 |
+
return audio_block_found
|
130 |
+
elif text_parts:
|
131 |
+
full_text = "\n".join(text_parts)
|
132 |
+
print(f"MCP tool returned text: {full_text[:100]}...")
|
133 |
+
return {"type": "text", "value": full_text}
|
134 |
+
elif json_parts:
|
135 |
+
full_json_str = "\n".join(json_parts)
|
136 |
+
print(f"MCP tool returned JSON string.")
|
137 |
+
return {"type": "json_string", "value": full_json_str} # Treat as string for display
|
138 |
+
elif other_parts:
|
139 |
+
print(f"MCP tool returned other content types.")
|
140 |
+
return {"type": "text", "value": "\n".join(other_parts)}
|
141 |
+
else:
|
142 |
+
print("MCP tool executed but returned no interpretable primary content blocks.")
|
143 |
+
return {"type": "text", "value": "Tool executed, but returned no standard content (audio/text/json)."}
|
144 |
+
|
145 |
+
print("MCP tool executed, but ToolResult or its content was empty.")
|
146 |
+
return {"type": "text", "value": "Tool executed, but returned no content."}
|
147 |
except Exception as e:
|
148 |
+
print(f"Error calling MCP tool '{tool_name}' or processing its result: {e}")
|
149 |
+
import traceback
|
150 |
+
traceback.print_exc()
|
151 |
+
return {"type": "error", "message": f"Error during MCP tool '{tool_name}' execution: {str(e)}"}
|
152 |
|
153 |
+
def analyze_message_for_tool_call(message, active_mcp_servers, llm_client, llm_model_to_use, base_system_message):
|
154 |
"""Analyze a message to determine if an MCP tool should be called"""
|
155 |
+
if not message or not message.strip() or not active_mcp_servers:
|
|
|
156 |
return None, None
|
157 |
|
158 |
+
tool_info_for_llm = []
|
159 |
+
for server_name_iter in active_mcp_servers:
|
160 |
+
if server_name_iter in mcp_connections:
|
161 |
+
server_tools = mcp_connections[server_name_iter]["tools"]
|
|
|
162 |
for tool in server_tools:
|
163 |
+
# Provide a concise description for the LLM
|
164 |
+
tool_info_for_llm.append(
|
165 |
+
f"- Server: '{server_name_iter}', Tool: '{tool.name}', Description: '{tool.description}'"
|
166 |
+
)
|
|
|
167 |
|
168 |
+
if not tool_info_for_llm:
|
169 |
+
print("No active MCP tools found for analysis.")
|
170 |
return None, None
|
171 |
|
172 |
+
tools_string_for_llm = "\n".join(tool_info_for_llm)
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# More robust system prompt for tool detection
|
175 |
+
analysis_system_prompt = f"""You are an expert assistant that determines if a user's request requires an external tool.
|
176 |
+
You have access to the following tools:
|
177 |
+
{tools_string_for_llm}
|
178 |
+
|
179 |
+
Based on the user's message, decide if any of these tools are appropriate.
|
180 |
+
If a tool is needed, respond ONLY with a JSON object containing:
|
181 |
+
"server_name": The name of the server providing the tool.
|
182 |
+
"tool_name": The name of the tool to be called.
|
183 |
+
"parameters": A dictionary of parameters for the tool, inferred from the user's message. Ensure parameter names match what the tool expects (often 'text', 'query', 'speed', etc.).
|
184 |
+
|
185 |
+
If NO tool is needed, respond ONLY with the exact string: NO_TOOL_NEEDED
|
186 |
+
|
187 |
+
Example 1 (TTS tool):
|
188 |
+
User: "Can you say 'hello world' for me at a slightly faster speed?"
|
189 |
+
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio", "parameters": {{"text": "hello world", "speed": 1.2}}}}
|
190 |
+
|
191 |
+
Example 2 (File tool):
|
192 |
+
User: "Read the content of my_document.txt"
|
193 |
+
Response: {{"server_name": "FileSystemServer", "tool_name": "readFile", "parameters": {{"path": "my_document.txt"}}}}
|
194 |
+
|
195 |
+
Example 3 (No tool):
|
196 |
+
User: "What's the weather like today?" (Assuming no weather tool is listed)
|
197 |
+
Response: NO_TOOL_NEEDED
|
198 |
+
|
199 |
+
User's current message is: "{message}"
|
200 |
+
Now, provide your decision:"""
|
201 |
|
202 |
try:
|
203 |
+
print(f"Sending tool analysis request to LLM model: {llm_model_to_use}")
|
204 |
+
response = llm_client.chat_completion(
|
205 |
+
model=llm_model_to_use,
|
206 |
messages=[
|
207 |
+
# {"role": "system", "content": base_system_message}, # Optional: provide original system message for context
|
208 |
+
{"role": "user", "content": analysis_system_prompt} # The prompt itself is the user message here
|
209 |
],
|
210 |
+
temperature=0.1, # Low temperature for deterministic tool selection
|
211 |
+
max_tokens=300,
|
212 |
+
stop=["\n\n"] # Stop early if LLM adds extra verbiage
|
213 |
)
|
214 |
|
215 |
+
analysis_text = response.choices[0].message.content.strip()
|
216 |
+
print(f"LLM tool analysis response: '{analysis_text}'")
|
217 |
|
218 |
+
if "NO_TOOL_NEEDED" in analysis_text or analysis_text == "NO_TOOL_NEEDED":
|
219 |
+
print("LLM determined no tool needed.")
|
220 |
return None, None
|
221 |
|
222 |
+
# Try to extract JSON from the response (handle potential markdown code blocks)
|
223 |
+
if analysis_text.startswith("```json"):
|
224 |
+
analysis_text = analysis_text.replace("```json", "").replace("```", "").strip()
|
225 |
+
elif analysis_text.startswith("```"):
|
226 |
+
analysis_text = analysis_text.replace("```", "").strip()
|
227 |
+
|
228 |
+
|
229 |
+
json_start = analysis_text.find("{")
|
230 |
+
json_end = analysis_text.rfind("}") + 1
|
231 |
|
232 |
+
if json_start == -1 or json_end <= json_start:
|
233 |
+
print(f"Could not find valid JSON object in LLM response: '{analysis_text}'")
|
234 |
return None, None
|
235 |
|
236 |
+
json_str = analysis_text[json_start:json_end]
|
237 |
try:
|
238 |
+
tool_call_data = json.loads(json_str)
|
239 |
+
if "server_name" in tool_call_data and "tool_name" in tool_call_data:
|
240 |
+
print(f"LLM suggested tool call: {tool_call_data}")
|
241 |
+
return tool_call_data.get("server_name"), {
|
242 |
+
"tool_name": tool_call_data.get("tool_name"),
|
243 |
+
"parameters": tool_call_data.get("parameters", {})
|
244 |
+
}
|
245 |
+
else:
|
246 |
+
print(f"LLM response parsed as JSON but missing server_name or tool_name: {json_str}")
|
247 |
+
return None, None
|
248 |
+
except json.JSONDecodeError as e:
|
249 |
+
print(f"Failed to parse tool call JSON from LLM response: '{json_str}'. Error: {e}")
|
250 |
return None, None
|
251 |
|
252 |
except Exception as e:
|
253 |
+
print(f"Error during LLM analysis for tool calls: {str(e)}")
|
254 |
+
import traceback
|
255 |
+
traceback.print_exc()
|
256 |
return None, None
|
257 |
|
258 |
def respond(
|
259 |
+
message_text_input, # From user function, this is just the text part
|
260 |
+
message_files_input, # From user function, this is the list of file paths
|
261 |
+
history_tuples: list[tuple[tuple[str, list], str]], # History: list of ((user_text, [user_files]), assistant_response)
|
262 |
+
system_message_prompt,
|
263 |
+
max_tokens_val,
|
264 |
+
temperature_val,
|
265 |
+
top_p_val,
|
266 |
+
frequency_penalty_val,
|
267 |
+
seed_val,
|
268 |
+
provider_choice,
|
269 |
+
custom_api_key_val,
|
270 |
+
custom_model_id,
|
271 |
+
# model_search_term_val, # Not directly used in respond, but kept for signature consistency if UI passes it
|
272 |
+
selected_hf_model_id,
|
273 |
+
mcp_is_enabled,
|
274 |
+
active_mcp_server_names, # List of selected server names
|
275 |
+
mcp_interaction_mode_choice
|
276 |
):
|
277 |
+
print(f"\n--- RESPOND FUNCTION CALLED ---")
|
278 |
+
print(f"Message Text: '{message_text_input}'")
|
279 |
+
print(f"Message Files: {message_files_input}")
|
280 |
+
# print(f"History (first item type if exists): {type(history_tuples) if history_tuples else 'No history'}")
|
281 |
+
print(f"System Prompt: '{system_message_prompt}'")
|
282 |
+
print(f"Provider: {provider_choice}, MCP Enabled: {mcp_is_enabled}, MCP Mode: {mcp_interaction_mode_choice}")
|
283 |
+
print(f"Active MCP Servers: {active_mcp_server_names}")
|
284 |
+
|
285 |
+
token_to_use_for_llm = custom_api_key_val if custom_api_key_val.strip() else ACCESS_TOKEN
|
286 |
+
if not token_to_use_for_llm and provider_choice != "hf-inference": # Basic check
|
287 |
+
yield "Error: API Key required for non-hf-inference providers."
|
288 |
+
return
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
llm_client_instance = InferenceClient(token=token_to_use_for_llm, provider=provider_choice)
|
|
|
|
|
|
|
291 |
|
292 |
+
current_seed = None if seed_val == -1 else seed_val
|
293 |
+
model_id_for_llm = custom_model_id.strip() if custom_model_id.strip() else selected_hf_model_id
|
294 |
+
print(f"Using LLM model: {model_id_for_llm} via {provider_choice}")
|
295 |
+
|
296 |
+
# --- MCP Tool Call Logic ---
|
297 |
+
if mcp_is_enabled and (message_text_input or message_files_input) and active_mcp_server_names:
|
298 |
+
tool_call_output_dict = None
|
299 |
+
invoked_tool_display_name = "a tool"
|
300 |
+
invoked_server_display_name = "an MCP server"
|
301 |
+
|
302 |
+
if message_text_input and message_text_input.startswith("/mcp"):
|
303 |
+
print("Processing explicit MCP command...")
|
304 |
+
command_parts = message_text_input.split(" ", 3)
|
|
|
|
|
|
|
|
|
305 |
if len(command_parts) < 3:
|
306 |
+
yield "Invalid MCP command. Format: /mcp <server_name> <tool_name> [arguments_json]"
|
307 |
+
return
|
308 |
|
309 |
+
_, server_name_cmd, tool_name_cmd = command_parts[:3]
|
310 |
+
invoked_server_display_name = server_name_cmd
|
311 |
+
invoked_tool_display_name = tool_name_cmd
|
312 |
+
args_json_str = "{}" if len(command_parts) < 4 else command_parts
|
313 |
|
314 |
try:
|
315 |
+
args_dict_cmd = json.loads(args_json_str)
|
316 |
+
tool_call_output_dict = call_mcp_tool(invoked_server_display_name, invoked_tool_display_name, **args_dict_cmd)
|
|
|
|
|
|
|
317 |
except json.JSONDecodeError:
|
318 |
+
yield f"Invalid JSON arguments for MCP command: {args_json_str}"
|
319 |
+
return
|
320 |
+
except Exception as e_cmd:
|
321 |
+
yield f"Error preparing MCP command: {str(e_cmd)}"
|
322 |
+
return
|
323 |
+
|
324 |
+
elif mcp_interaction_mode_choice == "Natural Language":
|
325 |
+
print("Analyzing message for natural language tool call...")
|
326 |
+
# For natural language, primarily use message_text_input. Files could be context later.
|
327 |
+
detected_server_nl, tool_info_nl = analyze_message_for_tool_call(
|
328 |
+
message_text_input,
|
329 |
+
active_mcp_server_names,
|
330 |
+
llm_client_instance,
|
331 |
+
model_id_for_llm,
|
332 |
+
system_message_prompt
|
333 |
)
|
334 |
|
335 |
+
if detected_server_nl and tool_info_nl and tool_info_nl.get("tool_name"):
|
336 |
+
invoked_server_display_name = detected_server_nl
|
337 |
+
invoked_tool_display_name = tool_info_nl['tool_name']
|
338 |
+
tool_params_nl = tool_info_nl.get("parameters", {})
|
339 |
+
tool_call_output_dict = call_mcp_tool(invoked_server_display_name, invoked_tool_display_name, **tool_params_nl)
|
340 |
+
|
341 |
+
# --- Handle MCP Tool Result (if a tool was called) ---
|
342 |
+
if tool_call_output_dict:
|
343 |
+
response_message_parts = [f"I attempted to use the **{invoked_tool_display_name}** tool from **{invoked_server_display_name}**."]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
+
if tool_call_output_dict.get("type") == "audio":
|
346 |
+
audio_data_uri = tool_call_output_dict["data_uri"]
|
347 |
+
audio_html_tag = f"<audio controls src='{audio_data_uri}' title='{tool_call_output_dict.get('name', 'Audio Output')}'></audio>"
|
348 |
+
response_message_parts.append(f"Here's the audio output:\n{audio_html_tag}")
|
349 |
+
elif tool_call_output_dict.get("type") == "text":
|
350 |
+
response_message_parts.append(f"\nResult:\n```\n{tool_call_output_dict['value']}\n```")
|
351 |
+
elif tool_call_output_dict.get("type") == "json_string": # Changed from "json" to avoid confusion with dict
|
352 |
+
response_message_parts.append(f"\nResult (JSON):\n```json\n{tool_call_output_dict['value']}\n```")
|
353 |
+
elif tool_call_output_dict.get("type") == "error":
|
354 |
+
response_message_parts.append(f"\nUnfortunately, there was an error: {tool_call_output_dict['message']}")
|
355 |
+
else: # Fallback for unexpected result structure
|
356 |
+
response_message_parts.append(f"\nThe tool returned: {str(tool_call_output_dict)}")
|
357 |
+
|
358 |
+
yield "\n".join(response_message_parts)
|
359 |
+
return # End here if a tool was called and processed
|
360 |
+
|
361 |
+
# --- Regular LLM Response Logic (if no MCP tool was successfully called and returned primary content) ---
|
362 |
+
print("Proceeding with standard LLM response generation.")
|
363 |
+
|
364 |
+
# Prepare current user message for LLM (multimodal if files exist)
|
365 |
+
current_user_llm_content = []
|
366 |
+
if message_text_input and message_text_input.strip():
|
367 |
+
current_user_llm_content.append({"type": "text", "text": message_text_input})
|
368 |
|
369 |
+
if message_files_input:
|
370 |
+
for file_path in message_files_input:
|
371 |
+
if file_path: # file_path is already the actual temp path from gr.File or gr.Image
|
372 |
+
encoded_img_str = encode_image(file_path)
|
373 |
+
if encoded_img_str:
|
374 |
+
current_user_llm_content.append({
|
375 |
+
"type": "image_url",
|
376 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img_str}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
})
|
378 |
+
else:
|
379 |
+
print(f"Warning: Failed to encode image {file_path} for LLM.")
|
380 |
+
|
381 |
+
if not current_user_llm_content:
|
382 |
+
print("No content (text or valid files) in current user message for LLM.")
|
383 |
+
yield "" # Or some indicator of no action
|
384 |
+
return
|
385 |
+
|
386 |
+
# Augment system message with MCP tool info if enabled
|
387 |
+
augmented_sys_msg = system_message_prompt
|
388 |
+
if mcp_is_enabled and active_mcp_server_names:
|
389 |
+
mcp_tool_descriptions_for_llm = []
|
390 |
+
for server_name_iter in active_mcp_server_names:
|
391 |
+
if server_name_iter in mcp_connections:
|
392 |
+
# Use the more detailed list_mcp_tools output for the system prompt if desired
|
393 |
+
tools_list_str = list_mcp_tools(server_name_iter) # This returns markdown
|
394 |
+
mcp_tool_descriptions_for_llm.append(f"From server '{server_name_iter}':\n{tools_list_str}")
|
395 |
+
|
396 |
+
if mcp_tool_descriptions_for_llm:
|
397 |
+
full_tools_info_str = "\n\n".join(mcp_tool_descriptions_for_llm)
|
398 |
+
interaction_advice = ""
|
399 |
+
if mcp_interaction_mode_choice == "Command Mode":
|
400 |
+
interaction_advice = "The user can invoke these tools using '/mcp <server_name> <tool_name> <json_args>'."
|
401 |
+
# For Natural Language mode, the LLM doesn't need explicit instruction in system prompt
|
402 |
+
# as `analyze_message_for_tool_call` handles that part.
|
403 |
+
|
404 |
+
augmented_sys_msg += f"\n\nYou also have access to the following external tools via Model Context Protocol (MCP):\n{full_tools_info_str}\n{interaction_advice}"
|
405 |
+
|
406 |
+
# Prepare messages list for LLM
|
407 |
+
messages_for_llm_api = [{"role": "system", "content": augmented_sys_msg}]
|
408 |
+
|
409 |
+
for hist_user_turn, hist_assist_response in history_tuples:
|
410 |
+
hist_user_text, hist_user_files = hist_user_turn # Unpack ((text, [files]))
|
411 |
+
|
412 |
+
history_user_llm_content = []
|
413 |
+
if hist_user_text and hist_user_text.strip():
|
414 |
+
history_user_llm_content.append({"type": "text", "text": hist_user_text})
|
415 |
+
if hist_user_files:
|
416 |
+
for hist_file_path in hist_user_files:
|
417 |
+
encoded_hist_img = encode_image(hist_file_path)
|
418 |
+
if encoded_hist_img:
|
419 |
+
history_user_llm_content.append({
|
420 |
+
"type": "image_url",
|
421 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_hist_img}"}
|
422 |
+
})
|
423 |
+
if history_user_llm_content: # Only add if there's actual content
|
424 |
+
messages_for_llm_api.append({"role": "user", "content": history_user_llm_content})
|
425 |
|
426 |
+
if hist_assist_response and hist_assist_response.strip():
|
427 |
+
messages_for_llm_api.append({"role": "assistant", "content": hist_assist_response})
|
428 |
+
|
429 |
+
messages_for_llm_api.append({"role": "user", "content": current_user_llm_content})
|
430 |
+
# print(f"Final messages for LLM API: {json.dumps(messages_for_llm_api, indent=2)}")
|
431 |
+
|
432 |
+
|
433 |
+
llm_parameters = {
|
434 |
+
"max_tokens": max_tokens_val, "temperature": temperature_val, "top_p": top_p_val,
|
435 |
+
"frequency_penalty": frequency_penalty_val,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
}
|
437 |
+
if current_seed is not None:
|
438 |
+
llm_parameters["seed"] = current_seed
|
|
|
439 |
|
440 |
+
print(f"Sending request to LLM: Model={model_id_for_llm}, Params={llm_parameters}")
|
441 |
+
streamed_response_text = ""
|
442 |
try:
|
443 |
+
llm_stream = llm_client_instance.chat_completion(
|
444 |
+
model=model_id_for_llm,
|
445 |
+
messages=messages_for_llm_api,
|
|
|
446 |
stream=True,
|
447 |
+
**llm_parameters
|
448 |
)
|
449 |
|
450 |
+
# print("Streaming LLM response: ", end="", flush=True)
|
451 |
+
for chunk in llm_stream:
|
|
|
|
|
452 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
453 |
+
delta = chunk.choices.delta
|
454 |
+
if hasattr(delta, 'content') and delta.content:
|
455 |
+
token = delta.content
|
456 |
+
# print(token, end="", flush=True)
|
457 |
+
streamed_response_text += token
|
458 |
+
yield streamed_response_text
|
459 |
+
# print("\nLLM Stream finished.")
|
460 |
+
except Exception as e_llm:
|
461 |
+
error_msg = f"Error during LLM inference: {str(e_llm)}"
|
462 |
+
print(error_msg)
|
463 |
+
import traceback
|
464 |
+
traceback.print_exc()
|
465 |
+
streamed_response_text += f"\n{error_msg}" # Append error to existing stream if any
|
466 |
+
yield streamed_response_text
|
467 |
+
|
468 |
+
print(f"--- RESPOND FUNCTION COMPLETED ---")
|
469 |
|
|
|
470 |
|
471 |
# GRADIO UI
|
472 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme", title="Serverless TextGen Hub + MCP") as demo:
|
473 |
+
gr.Markdown("# Serverless TextGen Hub with MCP Client")
|
474 |
chatbot = gr.Chatbot(
|
475 |
+
label="Chat",
|
476 |
height=600,
|
477 |
show_copy_button=True,
|
478 |
+
placeholder="Select a model, connect MCP servers (optional), and start chatting!",
|
479 |
+
bubble_full_width=False,
|
480 |
+
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-square.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
)
|
482 |
|
483 |
+
with gr.Row():
|
484 |
+
msg_textbox = gr.MultimodalTextbox( # Changed from gr.Textbox to gr.MultimodalTextbox
|
485 |
+
placeholder="Type a message or upload images... (Use /mcp for commands)",
|
486 |
+
show_label=False,
|
487 |
+
container=False,
|
488 |
+
scale=12,
|
489 |
+
file_types=["image"], # Can add more types like "audio", "video" if supported by models
|
490 |
+
file_count="multiple" # Allow multiple image uploads
|
491 |
+
)
|
492 |
+
# submit_button = gr.Button("Send", variant="primary", scale=1, min_width=100) # Optional explicit send button
|
493 |
+
|
494 |
+
with gr.Accordion("LLM Settings", open=False):
|
495 |
+
system_message_prompt_box = gr.Textbox(
|
496 |
+
value="You are a helpful and versatile AI assistant. You can understand text and images. If you have access to MCP tools, you can use them when appropriate or when the user asks.",
|
497 |
+
label="System Prompt", lines=3
|
498 |
)
|
499 |
|
|
|
500 |
with gr.Row():
|
501 |
+
with gr.Column(scale=1):
|
502 |
+
max_tokens_slider_ui = gr.Slider(minimum=128, maximum=8192, value=1024, step=128, label="Max New Tokens")
|
503 |
+
temperature_slider_ui = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature")
|
504 |
+
top_p_slider_ui = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (Nucleus Sampling)")
|
505 |
+
with gr.Column(scale=1):
|
506 |
+
frequency_penalty_slider_ui = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
507 |
+
seed_slider_ui = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
508 |
+
|
509 |
+
providers_list_ui = [
|
510 |
+
"hf-inference", "cerebras", "together", "sambanova", "novita",
|
511 |
+
"cohere", "fireworks-ai", "hyperbolic", "nebius",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
]
|
513 |
+
provider_radio_ui = gr.Radio(choices=providers_list_ui, value="hf-inference", label="Inference Provider")
|
514 |
|
515 |
+
byok_textbox_ui = gr.Textbox(label="Your Hugging Face API Key (Optional)", placeholder="Enter HF Token if using non-hf-inference providers or private models", type="password")
|
|
|
|
|
|
|
|
|
516 |
|
517 |
+
custom_model_id_box = gr.Textbox(label="Custom Model ID (Overrides selection below)", placeholder="e.g., meta-llama/Llama-3-8B-Instruct")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
+
model_search_box_ui = gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
+
# More diverse model list, including some known multimodal ones
|
522 |
+
featured_models_list_data = [
|
523 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct", # Good default
|
524 |
+
"meta-llama/Meta-Llama-3.1-70B-Instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
526 |
+
"mistralai/Mixtral-8x22B-Instruct-v0.1",
|
527 |
+
"Qwen/Qwen2-7B-Instruct",
|
528 |
+
"microsoft/Phi-3-medium-128k-instruct",
|
529 |
+
# Multimodal
|
530 |
+
"Salesforce/blip-image-captioning-large", # Example, might not be chat
|
531 |
+
"llava-hf/llava-1.5-7b-hf", # LLaVA example
|
532 |
+
"microsoft/kosmos-2-patch14-224", # Kosmos-2
|
533 |
+
"google/paligemma-3b-mix-448", # PaliGemma
|
|
|
|
|
|
|
|
|
|
|
534 |
]
|
535 |
+
featured_model_radio_ui = gr.Radio(label="Select a Featured Model", choices=featured_models_list_data, value="meta-llama/Meta-Llama-3.1-8B-Instruct", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
+
gr.Markdown("Tip: For multimodal chat, ensure selected model supports image inputs (e.g., LLaVA, PaliGemma, Kosmos-2).")
|
538 |
+
|
539 |
+
with gr.Accordion("MCP Client Settings", open=False):
|
540 |
+
mcp_enabled_checkbox_ui = gr.Checkbox(label="Enable MCP Support", value=False, info="Connect to external tools and services via MCP.")
|
|
|
|
|
|
|
|
|
|
|
541 |
|
542 |
with gr.Row():
|
543 |
+
mcp_server_url_textbox = gr.Textbox(label="MCP Server URL", placeholder="e.g., https://your-mcp-server.hf.space/gradio_api/mcp/sse")
|
544 |
+
mcp_server_name_textbox = gr.Textbox(label="Friendly Server Name (Optional)", placeholder="MyTTS_Server")
|
545 |
+
mcp_connect_button_ui = gr.Button("Connect", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
|
547 |
+
mcp_connection_status_textbox = gr.Textbox(label="MCP Connection Status", placeholder="No MCP servers connected.", interactive=False, lines=2)
|
|
|
|
|
|
|
|
|
548 |
|
549 |
+
active_mcp_servers_dropdown = gr.Dropdown(
|
550 |
+
label="Use Tools From (Select Active MCP Servers)", choices=[], multiselect=True,
|
551 |
+
info="Choose which connected servers the LLM can use tools from."
|
|
|
|
|
552 |
)
|
553 |
|
554 |
+
mcp_interaction_mode_radio = gr.Radio(
|
555 |
+
label="MCP Interaction Mode", choices=["Natural Language", "Command Mode"], value="Natural Language",
|
556 |
+
info="Natural Language: AI tries to detect tool use. Command Mode: Use '/mcp ...' syntax."
|
|
|
|
|
557 |
)
|
558 |
+
gr.Markdown("Example MCP Command: `/mcp MyTTS text_to_audio {\"text\": \"Hello world!\"}`")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
+
# --- Event Handlers ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
|
562 |
+
# Store history as list of tuples: [ ((user_text, [user_files]), assistant_response), ... ]
|
563 |
+
chat_history_state = gr.State([])
|
564 |
+
|
565 |
+
def user_interaction(user_multimodal_input, current_chat_history):
|
566 |
+
user_text = user_multimodal_input["text"] if user_multimodal_input and "text" in user_multimodal_input else ""
|
567 |
+
user_files = user_multimodal_input["files"] if user_multimodal_input and "files" in user_multimodal_input else []
|
568 |
+
|
569 |
+
# Only add to history if there's text or files
|
570 |
+
if user_text or user_files:
|
571 |
+
current_chat_history.append( ((user_text, user_files), None) ) # Append user turn, assistant response is None initially
|
572 |
+
return current_chat_history, gr.update(value={"text": "", "files": []}) # Clear input textbox
|
573 |
+
|
574 |
+
def bot_response_generator(
|
575 |
+
current_chat_history, system_prompt, max_tokens, temp, top_p_val, freq_penalty, seed_val,
|
576 |
+
provider_val, api_key_val, custom_model_val, selected_model_val, # Removed search_term as it's not directly used by respond
|
577 |
+
mcp_enabled_val, active_servers_val, mcp_mode_val
|
578 |
+
):
|
579 |
+
if not current_chat_history or current_chat_history[-1] is not None: # If no user message or last message already has bot response
|
580 |
+
yield current_chat_history # Or simply `return current_chat_history` if not streaming
|
581 |
+
return
|
582 |
+
|
583 |
+
user_turn_content, _ = current_chat_history[-1] # Get the latest user turn: (text, [files])
|
584 |
+
message_text, message_files = user_turn_content
|
585 |
+
|
586 |
+
# The history passed to `respond` should be all turns *before* the current one
|
587 |
+
history_for_respond = current_chat_history[:-1]
|
588 |
+
|
589 |
+
response_stream = respond(
|
590 |
+
message_text, message_files, history_for_respond,
|
591 |
+
system_prompt, max_tokens, temp, top_p_val, freq_penalty, seed_val,
|
592 |
+
provider_val, api_key_val, custom_model_val, selected_model_val,
|
593 |
+
mcp_enabled_val, active_servers_val, mcp_mode_val
|
594 |
+
)
|
|
|
595 |
|
596 |
+
full_bot_message = ""
|
597 |
+
for chunk in response_stream:
|
598 |
+
full_bot_message = chunk
|
599 |
+
current_chat_history[-1] = (user_turn_content, full_bot_message) # Update last item's assistant part
|
600 |
+
yield current_chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
|
602 |
+
# Link UI components to functions
|
603 |
+
msg_textbox.submit(
|
604 |
+
user_interaction,
|
605 |
+
inputs=[msg_textbox, chat_history_state],
|
606 |
+
outputs=[chat_history_state, msg_textbox] # Update history and clear input
|
607 |
+
).then(
|
608 |
+
bot_response_generator,
|
609 |
+
inputs=[
|
610 |
+
chat_history_state, system_message_prompt_box, max_tokens_slider_ui, temperature_slider_ui,
|
611 |
+
top_p_slider_ui, frequency_penalty_slider_ui, seed_slider_ui, provider_radio_ui,
|
612 |
+
byok_textbox_ui, custom_model_id_box, featured_model_radio_ui,
|
613 |
+
mcp_enabled_checkbox_ui, active_mcp_servers_dropdown, mcp_interaction_mode_radio
|
614 |
+
],
|
615 |
+
outputs=[chatbot] # Stream to chatbot
|
616 |
)
|
|
|
617 |
|
618 |
+
# MCP Connection
|
619 |
+
def handle_mcp_connect(url, name_suggestion):
|
620 |
+
if not url or not url.strip():
|
621 |
+
return "MCP Server URL cannot be empty.", gr.update(choices=list(mcp_connections.keys()))
|
622 |
+
|
623 |
+
_, status_msg = connect_to_mcp_server(url, name_suggestion)
|
624 |
+
# Update dropdown choices with current server names
|
625 |
+
new_choices = list(mcp_connections.keys())
|
626 |
+
# Preserve selected values if they are still valid connections
|
627 |
+
# current_selected = active_mcp_servers_dropdown.value # This might not work directly
|
628 |
+
# new_selected = [s for s in current_selected if s in new_choices]
|
629 |
+
return status_msg, gr.update(choices=new_choices) #, value=new_selected)
|
630 |
+
|
631 |
+
mcp_connect_button_ui.click(
|
632 |
+
handle_mcp_connect,
|
633 |
+
inputs=[mcp_server_url_textbox, mcp_server_name_textbox],
|
634 |
+
outputs=[mcp_connection_status_textbox, active_mcp_servers_dropdown]
|
635 |
)
|
|
|
636 |
|
637 |
+
# Model Filtering
|
638 |
+
def filter_featured_models(search_query):
|
639 |
+
if not search_query:
|
640 |
+
return gr.update(choices=featured_models_list_data)
|
641 |
+
filtered = [m for m in featured_models_list_data if search_query.lower() in m.lower()]
|
642 |
+
return gr.update(choices=filtered if filtered else ["No models match your search"])
|
643 |
+
|
644 |
+
model_search_box_ui.change(filter_featured_models, inputs=model_search_box_ui, outputs=featured_model_radio_ui)
|
645 |
+
|
646 |
+
# Auto-select hf-inference if BYOK is empty and other provider is chosen
|
647 |
+
def validate_api_key_for_provider(api_key_text, current_provider):
|
648 |
+
if not api_key_text.strip() and current_provider != "hf-inference":
|
649 |
+
gr.Warning("API Key needed for non-hf-inference providers. Defaulting to hf-inference.")
|
650 |
+
return gr.update(value="hf-inference")
|
651 |
+
return current_provider # No change if key provided or hf-inference selected
|
652 |
+
|
653 |
+
byok_textbox_ui.change(validate_api_key_for_provider, inputs=[byok_textbox_ui, provider_radio_ui], outputs=provider_radio_ui)
|
654 |
+
provider_radio_ui.change(validate_api_key_for_provider, inputs=[byok_textbox_ui, provider_radio_ui], outputs=provider_radio_ui)
|
655 |
|
|
|
656 |
|
657 |
if __name__ == "__main__":
|
658 |
+
print("Launching Gradio demo...")
|
659 |
+
demo.queue().launch(debug=True, show_api=False) # mcp_server=False as this is a client app
|