Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,180 +5,119 @@ import json
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
-
import
|
9 |
-
from typing import Dict, List, Optional, Any, Union
|
10 |
-
import time
|
11 |
-
import logging
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
|
17 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
18 |
-
|
19 |
-
|
20 |
-
# MCP Client
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def encode_image(image_path):
|
32 |
if not image_path:
|
33 |
-
|
34 |
return None
|
35 |
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
# If it's already a PIL Image
|
40 |
if isinstance(image_path, Image.Image):
|
41 |
image = image_path
|
42 |
else:
|
43 |
-
# Try to open the image file
|
44 |
image = Image.open(image_path)
|
45 |
|
46 |
-
# Convert to RGB if image has an alpha channel (RGBA)
|
47 |
if image.mode == 'RGBA':
|
48 |
image = image.convert('RGB')
|
49 |
|
50 |
-
# Encode to base64
|
51 |
buffered = io.BytesIO()
|
52 |
image.save(buffered, format="JPEG")
|
53 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
54 |
-
|
55 |
return img_str
|
56 |
except Exception as e:
|
57 |
-
|
58 |
-
return None
|
59 |
-
|
60 |
-
# MCP Client implementation
|
61 |
-
class MCPClient:
|
62 |
-
def __init__(self, server_url: str):
|
63 |
-
self.server_url = server_url
|
64 |
-
self.session_id = None
|
65 |
-
logger.info(f"Initialized MCP Client for server: {server_url}")
|
66 |
-
|
67 |
-
def connect(self) -> bool:
|
68 |
-
"""Establish connection with the MCP server"""
|
69 |
-
try:
|
70 |
-
response = requests.post(
|
71 |
-
f"{self.server_url}/connect",
|
72 |
-
json={"client": "Serverless-TextGen-Hub", "version": "1.0.0"}
|
73 |
-
)
|
74 |
-
if response.status_code == 200:
|
75 |
-
result = response.json()
|
76 |
-
self.session_id = result.get("session_id")
|
77 |
-
logger.info(f"Connected to MCP server with session ID: {self.session_id}")
|
78 |
-
return True
|
79 |
-
else:
|
80 |
-
logger.error(f"Failed to connect to MCP server: {response.status_code} - {response.text}")
|
81 |
-
return False
|
82 |
-
except Exception as e:
|
83 |
-
logger.error(f"Error connecting to MCP server: {e}")
|
84 |
-
return False
|
85 |
-
|
86 |
-
def list_tools(self) -> List[Dict]:
|
87 |
-
"""List available tools from the MCP server"""
|
88 |
-
if not self.session_id:
|
89 |
-
if not self.connect():
|
90 |
-
return []
|
91 |
-
|
92 |
-
try:
|
93 |
-
response = requests.get(
|
94 |
-
f"{self.server_url}/tools/list",
|
95 |
-
headers={"X-MCP-Session": self.session_id}
|
96 |
-
)
|
97 |
-
if response.status_code == 200:
|
98 |
-
result = response.json()
|
99 |
-
tools = result.get("tools", [])
|
100 |
-
logger.info(f"Retrieved {len(tools)} tools from MCP server")
|
101 |
-
return tools
|
102 |
-
else:
|
103 |
-
logger.error(f"Failed to list tools: {response.status_code} - {response.text}")
|
104 |
-
return []
|
105 |
-
except Exception as e:
|
106 |
-
logger.error(f"Error listing tools: {e}")
|
107 |
-
return []
|
108 |
-
|
109 |
-
def call_tool(self, tool_name: str, args: Dict) -> Dict:
|
110 |
-
"""Call a tool on the MCP server"""
|
111 |
-
if not self.session_id:
|
112 |
-
if not self.connect():
|
113 |
-
return {"error": "Not connected to MCP server"}
|
114 |
-
|
115 |
-
try:
|
116 |
-
response = requests.post(
|
117 |
-
f"{self.server_url}/tools/call",
|
118 |
-
headers={"X-MCP-Session": self.session_id},
|
119 |
-
json={"name": tool_name, "arguments": args}
|
120 |
-
)
|
121 |
-
if response.status_code == 200:
|
122 |
-
result = response.json()
|
123 |
-
logger.info(f"Successfully called tool {tool_name}")
|
124 |
-
return result
|
125 |
-
else:
|
126 |
-
error_msg = f"Failed to call tool {tool_name}: {response.status_code} - {response.text}"
|
127 |
-
logger.error(error_msg)
|
128 |
-
return {"error": error_msg}
|
129 |
-
except Exception as e:
|
130 |
-
error_msg = f"Error calling tool {tool_name}: {e}"
|
131 |
-
logger.error(error_msg)
|
132 |
-
return {"error": error_msg}
|
133 |
-
|
134 |
-
# Text-to-speech client function
|
135 |
-
def text_to_speech(text: str, server_name: str = None) -> Optional[str]:
|
136 |
-
"""
|
137 |
-
Convert text to speech using an MCP TTS server
|
138 |
-
Returns an audio URL that can be embedded in the chat
|
139 |
-
"""
|
140 |
-
if not server_name or server_name not in MCP_SERVERS:
|
141 |
-
logger.warning(f"TTS server {server_name} not configured")
|
142 |
-
return None
|
143 |
-
|
144 |
-
server_url = MCP_SERVERS[server_name].get("url")
|
145 |
-
if not server_url:
|
146 |
-
logger.warning(f"No URL found for TTS server {server_name}")
|
147 |
-
return None
|
148 |
-
|
149 |
-
client = MCPClient(server_url)
|
150 |
-
|
151 |
-
# List available tools to find the TTS tool
|
152 |
-
tools = client.list_tools()
|
153 |
-
tts_tool = next((t for t in tools if "text_to_audio" in t["name"] or "tts" in t["name"]), None)
|
154 |
-
|
155 |
-
if not tts_tool:
|
156 |
-
logger.warning(f"No TTS tool found on server {server_name}")
|
157 |
-
return None
|
158 |
-
|
159 |
-
# Call the TTS tool
|
160 |
-
result = client.call_tool(tts_tool["name"], {"text": text, "speed": 1.0})
|
161 |
-
|
162 |
-
if "error" in result:
|
163 |
-
logger.error(f"TTS error: {result['error']}")
|
164 |
-
return None
|
165 |
-
|
166 |
-
# Process the result - usually a base64 encoded WAV
|
167 |
-
audio_data = result.get("audio") or result.get("content") or result.get("result")
|
168 |
-
|
169 |
-
if isinstance(audio_data, str) and audio_data.startswith("data:audio"):
|
170 |
-
# Already a data URL
|
171 |
-
return audio_data
|
172 |
-
elif isinstance(audio_data, str):
|
173 |
-
# Assume it's base64 encoded
|
174 |
-
return f"data:audio/wav;base64,{audio_data}"
|
175 |
-
else:
|
176 |
-
logger.error(f"Unexpected TTS result format: {type(audio_data)}")
|
177 |
return None
|
178 |
|
|
|
179 |
def respond(
|
180 |
-
|
181 |
-
|
182 |
history: list[tuple[str, str]],
|
183 |
system_message,
|
184 |
max_tokens,
|
@@ -189,582 +128,314 @@ def respond(
|
|
189 |
provider,
|
190 |
custom_api_key,
|
191 |
custom_model,
|
192 |
-
model_search_term,
|
193 |
-
selected_model
|
194 |
-
tts_enabled=False,
|
195 |
-
tts_server=None
|
196 |
):
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
logger.info(f"Selected provider: {provider}")
|
204 |
-
logger.info(f"Custom API Key provided: {bool(custom_api_key.strip())}")
|
205 |
-
logger.info(f"Selected model (custom_model): {custom_model}")
|
206 |
-
logger.info(f"Model search term: {model_search_term}")
|
207 |
-
logger.info(f"Selected model from radio: {selected_model}")
|
208 |
-
logger.info(f"TTS enabled: {tts_enabled}, TTS server: {tts_server}")
|
209 |
-
|
210 |
-
# Determine which token to use
|
211 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
if
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
# Convert seed to None if -1 (meaning random)
|
223 |
-
if seed == -1:
|
224 |
-
seed = None
|
225 |
-
|
226 |
-
# Create multimodal content if images are present
|
227 |
-
if image_files and len(image_files) > 0:
|
228 |
-
# Process the user message to include images
|
229 |
-
user_content = []
|
230 |
-
|
231 |
-
# Add text part if there is any
|
232 |
-
if message and message.strip():
|
233 |
-
user_content.append({
|
234 |
-
"type": "text",
|
235 |
-
"text": message
|
236 |
-
})
|
237 |
-
|
238 |
-
# Add image parts
|
239 |
-
for img in image_files:
|
240 |
-
if img is not None:
|
241 |
-
# Get raw image data from path
|
242 |
-
try:
|
243 |
-
encoded_image = encode_image(img)
|
244 |
-
if encoded_image:
|
245 |
-
user_content.append({
|
246 |
-
"type": "image_url",
|
247 |
-
"image_url": {
|
248 |
-
"url": f"data:image/jpeg;base64,{encoded_image}"
|
249 |
-
}
|
250 |
-
})
|
251 |
-
except Exception as e:
|
252 |
-
logger.error(f"Error encoding image: {e}")
|
253 |
-
else:
|
254 |
-
# Text-only message
|
255 |
-
user_content = message
|
256 |
-
|
257 |
-
# Prepare messages in the format expected by the API
|
258 |
-
messages = [{"role": "system", "content": system_message}]
|
259 |
-
logger.info("Initial messages array constructed.")
|
260 |
-
|
261 |
-
# Add conversation history to the context
|
262 |
-
for val in history:
|
263 |
-
user_part = val[0]
|
264 |
-
assistant_part = val[1]
|
265 |
-
if user_part:
|
266 |
-
# Handle both text-only and multimodal messages in history
|
267 |
-
if isinstance(user_part, tuple) and len(user_part) == 2:
|
268 |
-
# This is a multimodal message with text and images
|
269 |
-
history_content = []
|
270 |
-
if user_part[0]: # Text
|
271 |
-
history_content.append({
|
272 |
-
"type": "text",
|
273 |
-
"text": user_part[0]
|
274 |
})
|
275 |
-
|
276 |
-
for img in user_part[1]: # Images
|
277 |
-
if img:
|
278 |
-
try:
|
279 |
-
encoded_img = encode_image(img)
|
280 |
-
if encoded_img:
|
281 |
-
history_content.append({
|
282 |
-
"type": "image_url",
|
283 |
-
"image_url": {
|
284 |
-
"url": f"data:image/jpeg;base64,{encoded_img}"
|
285 |
-
}
|
286 |
-
})
|
287 |
-
except Exception as e:
|
288 |
-
logger.error(f"Error encoding history image: {e}")
|
289 |
-
|
290 |
-
messages.append({"role": "user", "content": history_content})
|
291 |
-
else:
|
292 |
-
# Regular text message
|
293 |
-
messages.append({"role": "user", "content": user_part})
|
294 |
-
logger.info(f"Added user message to context (type: {type(user_part)})")
|
295 |
-
|
296 |
-
if assistant_part:
|
297 |
-
messages.append({"role": "assistant", "content": assistant_part})
|
298 |
-
logger.info(f"Added assistant message to context: {assistant_part}")
|
299 |
-
|
300 |
-
# Append the latest user message
|
301 |
-
messages.append({"role": "user", "content": user_content})
|
302 |
-
logger.info(f"Latest user message appended (content type: {type(user_content)})")
|
303 |
-
|
304 |
-
# Determine which model to use, prioritizing custom_model if provided
|
305 |
-
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
306 |
-
logger.info(f"Model selected for inference: {model_to_use}")
|
307 |
-
|
308 |
-
# Start with an empty string to build the response as tokens stream in
|
309 |
-
response = ""
|
310 |
-
logger.info(f"Sending request to {provider} provider.")
|
311 |
-
|
312 |
-
# Prepare parameters for the chat completion request
|
313 |
-
parameters = {
|
314 |
-
"max_tokens": max_tokens,
|
315 |
-
"temperature": temperature,
|
316 |
-
"top_p": top_p,
|
317 |
-
"frequency_penalty": frequency_penalty,
|
318 |
-
}
|
319 |
|
320 |
-
if
|
321 |
-
|
|
|
|
|
322 |
|
323 |
-
#
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
def validate_provider(api_key, provider):
|
371 |
if not api_key.strip() and provider != "hf-inference":
|
372 |
return gr.update(value="hf-inference")
|
373 |
return gr.update(value=provider)
|
374 |
|
375 |
-
# Function to list available MCP servers
|
376 |
-
def list_mcp_servers():
|
377 |
-
"""List all configured MCP servers"""
|
378 |
-
return list(MCP_SERVERS.keys())
|
379 |
-
|
380 |
# GRADIO UI
|
381 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
382 |
-
# Create the chatbot component
|
383 |
chatbot = gr.Chatbot(
|
384 |
-
|
385 |
-
show_copy_button=True,
|
386 |
-
placeholder="Select a model
|
387 |
-
layout="panel"
|
|
|
388 |
)
|
389 |
-
logger.info("Chatbot interface created.")
|
390 |
|
391 |
-
|
392 |
-
msg = gr.MultimodalTextbox(
|
393 |
placeholder="Type a message or upload images...",
|
394 |
-
show_label=False,
|
395 |
-
|
396 |
-
scale=12,
|
397 |
-
file_types=["image"],
|
398 |
-
file_count="multiple",
|
399 |
-
sources=["upload"]
|
400 |
)
|
401 |
|
402 |
-
# Create accordion for settings
|
403 |
with gr.Accordion("Settings", open=False):
|
404 |
-
|
405 |
-
system_message_box = gr.Textbox(
|
406 |
-
value="You are a helpful AI assistant that can understand images and text.",
|
407 |
-
placeholder="You are a helpful assistant.",
|
408 |
-
label="System Prompt"
|
409 |
-
)
|
410 |
-
|
411 |
-
# Generation parameters
|
412 |
with gr.Row():
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
minimum=0.1,
|
432 |
-
maximum=1.0,
|
433 |
-
value=0.95,
|
434 |
-
step=0.05,
|
435 |
-
label="Top-P"
|
436 |
-
)
|
437 |
-
|
438 |
-
with gr.Column():
|
439 |
-
frequency_penalty_slider = gr.Slider(
|
440 |
-
minimum=-2.0,
|
441 |
-
maximum=2.0,
|
442 |
-
value=0.0,
|
443 |
-
step=0.1,
|
444 |
-
label="Frequency Penalty"
|
445 |
-
)
|
446 |
-
|
447 |
-
seed_slider = gr.Slider(
|
448 |
-
minimum=-1,
|
449 |
-
maximum=65535,
|
450 |
-
value=-1,
|
451 |
-
step=1,
|
452 |
-
label="Seed (-1 for random)"
|
453 |
-
)
|
454 |
-
|
455 |
-
# Provider selection
|
456 |
-
providers_list = [
|
457 |
-
"hf-inference", # Default Hugging Face Inference
|
458 |
-
"cerebras", # Cerebras provider
|
459 |
-
"together", # Together AI
|
460 |
-
"sambanova", # SambaNova
|
461 |
-
"novita", # Novita AI
|
462 |
-
"cohere", # Cohere
|
463 |
-
"fireworks-ai", # Fireworks AI
|
464 |
-
"hyperbolic", # Hyperbolic
|
465 |
-
"nebius", # Nebius
|
466 |
-
]
|
467 |
-
|
468 |
-
provider_radio = gr.Radio(
|
469 |
-
choices=providers_list,
|
470 |
-
value="hf-inference",
|
471 |
-
label="Inference Provider",
|
472 |
-
)
|
473 |
-
|
474 |
-
# New BYOK textbox
|
475 |
-
byok_textbox = gr.Textbox(
|
476 |
-
value="",
|
477 |
-
label="BYOK (Bring Your Own Key)",
|
478 |
-
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
479 |
-
placeholder="Enter your Hugging Face API token",
|
480 |
-
type="password" # Hide the API key for security
|
481 |
-
)
|
482 |
-
|
483 |
-
# Custom model box
|
484 |
-
custom_model_box = gr.Textbox(
|
485 |
-
value="",
|
486 |
-
label="Custom Model",
|
487 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
488 |
-
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
489 |
-
)
|
490 |
-
|
491 |
-
# Model search
|
492 |
-
model_search_box = gr.Textbox(
|
493 |
-
label="Filter Models",
|
494 |
-
placeholder="Search for a featured model...",
|
495 |
-
lines=1
|
496 |
-
)
|
497 |
-
|
498 |
-
# Featured models list
|
499 |
-
# Updated to include multimodal models
|
500 |
-
models_list = [
|
501 |
-
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
502 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
503 |
-
"meta-llama/Llama-3.1-70B-Instruct",
|
504 |
-
"meta-llama/Llama-3.0-70B-Instruct",
|
505 |
-
"meta-llama/Llama-3.2-3B-Instruct",
|
506 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
507 |
-
"meta-llama/Llama-3.1-8B-Instruct",
|
508 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
509 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
510 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
511 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
512 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
513 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
514 |
-
"Qwen/Qwen3-235B-A22B",
|
515 |
-
"Qwen/Qwen3-32B",
|
516 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
517 |
-
"Qwen/Qwen2.5-3B-Instruct",
|
518 |
-
"Qwen/Qwen2.5-0.5B-Instruct",
|
519 |
-
"Qwen/QwQ-32B",
|
520 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
521 |
-
"microsoft/Phi-3.5-mini-instruct",
|
522 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
523 |
"microsoft/Phi-3-mini-4k-instruct",
|
524 |
]
|
|
|
|
|
525 |
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
|
|
|
|
|
|
|
|
531 |
)
|
|
|
|
|
532 |
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
visible=len(available_servers) > 0
|
554 |
-
)
|
555 |
-
|
556 |
-
# If no servers configured, show a message
|
557 |
-
if not available_servers:
|
558 |
-
gr.Markdown("""
|
559 |
-
No MCP servers configured. Add them using the MCP_CONFIG environment variable:
|
560 |
-
```json
|
561 |
-
{
|
562 |
-
"kokoroTTS": {
|
563 |
-
"url": "https://your-kokoro-tts-server/gradio_api/mcp/sse"
|
564 |
-
}
|
565 |
-
}
|
566 |
-
```
|
567 |
-
""")
|
568 |
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
def filter_models(search_term):
|
574 |
-
|
575 |
-
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
576 |
-
logger.info(f"Filtered models: {filtered}")
|
577 |
-
return gr.update(choices=filtered)
|
578 |
|
579 |
-
# Function to set custom model from radio
|
580 |
def set_custom_model_from_radio(selected):
|
581 |
-
|
582 |
-
return selected
|
583 |
|
584 |
-
#
|
585 |
-
|
586 |
-
|
587 |
-
logger.info(f"User message received: {user_message}")
|
588 |
-
|
589 |
-
# Skip if message is empty (no text and no files)
|
590 |
-
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
591 |
-
logger.info("Empty message, skipping")
|
592 |
-
return history
|
593 |
-
|
594 |
-
# Prepare multimodal message format
|
595 |
-
text_content = user_message.get("text", "").strip()
|
596 |
-
files = user_message.get("files", [])
|
597 |
-
|
598 |
-
logger.info(f"Text content: {text_content}")
|
599 |
-
logger.info(f"Files: {files}")
|
600 |
-
|
601 |
-
# If both text and files are empty, skip
|
602 |
-
if not text_content and not files:
|
603 |
-
logger.info("No content to display")
|
604 |
-
return history
|
605 |
-
|
606 |
-
# Add message with images to history
|
607 |
-
if files and len(files) > 0:
|
608 |
-
# Add text message first if it exists
|
609 |
-
if text_content:
|
610 |
-
# Add a separate text message
|
611 |
-
logger.info(f"Adding text message: {text_content}")
|
612 |
-
history.append([text_content, None])
|
613 |
-
|
614 |
-
# Then add each image file separately
|
615 |
-
for file_path in files:
|
616 |
-
if file_path and isinstance(file_path, str):
|
617 |
-
logger.info(f"Adding image: {file_path}")
|
618 |
-
# Add image as a separate message with no text
|
619 |
-
history.append([f"", None])
|
620 |
-
|
621 |
-
return history
|
622 |
-
else:
|
623 |
-
# For text-only messages
|
624 |
-
logger.info(f"Adding text-only message: {text_content}")
|
625 |
-
history.append([text_content, None])
|
626 |
-
return history
|
627 |
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
logger.info("No history to process")
|
633 |
-
return history
|
634 |
-
|
635 |
-
# Get the most recent message and detect if it's an image
|
636 |
-
user_message = history[-1][0]
|
637 |
-
logger.info(f"Processing user message: {user_message}")
|
638 |
-
|
639 |
-
is_image = False
|
640 |
-
image_path = None
|
641 |
-
text_content = user_message
|
642 |
-
|
643 |
-
# Check if this is an image message (marked with ![Image])
|
644 |
-
if isinstance(user_message, str) and user_message.startswith(":
|
645 |
-
is_image = True
|
646 |
-
# Extract image path from markdown format 
|
647 |
-
image_path = user_message.replace(".replace(")", "")
|
648 |
-
logger.info(f"Image detected: {image_path}")
|
649 |
-
text_content = "" # No text for image-only messages
|
650 |
-
|
651 |
-
# Look back for text context if this is an image
|
652 |
-
text_context = ""
|
653 |
-
if is_image and len(history) > 1:
|
654 |
-
# Use the previous message as context if it's text
|
655 |
-
prev_message = history[-2][0]
|
656 |
-
if isinstance(prev_message, str) and not prev_message.startswith(":
|
657 |
-
text_context = prev_message
|
658 |
-
logger.info(f"Using text context from previous message: {text_context}")
|
659 |
-
|
660 |
-
# Process message through respond function
|
661 |
-
history[-1][1] = ""
|
662 |
-
|
663 |
-
# Use either the image or text for the API
|
664 |
-
if is_image:
|
665 |
-
# For image messages
|
666 |
-
for response in respond(
|
667 |
-
text_context, # Text context from previous message if any
|
668 |
-
[image_path], # Current image
|
669 |
-
history[:-1], # Previous history
|
670 |
-
system_msg,
|
671 |
-
max_tokens,
|
672 |
-
temperature,
|
673 |
-
top_p,
|
674 |
-
freq_penalty,
|
675 |
-
seed,
|
676 |
-
provider,
|
677 |
-
api_key,
|
678 |
-
custom_model,
|
679 |
-
search_term,
|
680 |
-
selected_model,
|
681 |
-
tts_enabled,
|
682 |
-
tts_server
|
683 |
-
):
|
684 |
-
history[-1][1] = response
|
685 |
-
yield history
|
686 |
-
else:
|
687 |
-
# For text-only messages
|
688 |
-
for response in respond(
|
689 |
-
text_content, # Text message
|
690 |
-
None, # No image
|
691 |
-
history[:-1], # Previous history
|
692 |
-
system_msg,
|
693 |
-
max_tokens,
|
694 |
-
temperature,
|
695 |
-
top_p,
|
696 |
-
freq_penalty,
|
697 |
-
seed,
|
698 |
-
provider,
|
699 |
-
api_key,
|
700 |
-
custom_model,
|
701 |
-
search_term,
|
702 |
-
selected_model,
|
703 |
-
tts_enabled,
|
704 |
-
tts_server
|
705 |
-
):
|
706 |
-
history[-1][1] = response
|
707 |
-
yield history
|
708 |
-
|
709 |
-
# Event handlers - only using the MultimodalTextbox's built-in submit functionality
|
710 |
-
msg.submit(
|
711 |
-
user,
|
712 |
-
[msg, chatbot],
|
713 |
-
[chatbot],
|
714 |
-
queue=False
|
715 |
-
).then(
|
716 |
-
bot,
|
717 |
-
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
718 |
-
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
719 |
-
model_search_box, featured_model_radio, tts_enabled, tts_server],
|
720 |
-
[chatbot]
|
721 |
-
).then(
|
722 |
-
lambda: {"text": "", "files": []}, # Clear inputs after submission
|
723 |
-
None,
|
724 |
-
[msg]
|
725 |
-
)
|
726 |
-
|
727 |
-
# Connect the model filter to update the radio choices
|
728 |
-
model_search_box.change(
|
729 |
-
fn=filter_models,
|
730 |
-
inputs=model_search_box,
|
731 |
-
outputs=featured_model_radio
|
732 |
-
)
|
733 |
-
logger.info("Model search box change event linked.")
|
734 |
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
750 |
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
)
|
757 |
-
logger.info("Provider radio button change event linked.")
|
758 |
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
outputs=tts_server
|
764 |
-
)
|
765 |
|
766 |
-
|
|
|
|
|
767 |
|
|
|
768 |
if __name__ == "__main__":
|
769 |
-
|
770 |
-
demo.launch(show_api=True
|
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
import atexit
|
|
|
|
|
|
|
9 |
|
10 |
+
# Ensure smolagents and mcp are installed: pip install "smolagents[mcp]" mcp
|
11 |
+
from smolagents import ToolCollection, CodeAgent
|
12 |
+
from smolagents.mcp_client import MCPClient as SmolMCPClient # For connecting to MCP SSE servers
|
13 |
|
14 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
15 |
+
print("Access token loaded.")
|
16 |
+
|
17 |
+
# --- MCP Client Integration ---
|
18 |
+
mcp_tools_collection = ToolCollection(tools=[]) # Global store for loaded MCP tools
|
19 |
+
mcp_client_instances = [] # To keep track of client instances for proper closing
|
20 |
+
|
21 |
+
DEFAULT_MCP_SERVERS = [
|
22 |
+
{"name": "KokoroTTS (Example)", "type": "sse", "url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"}
|
23 |
+
]
|
24 |
+
|
25 |
+
def load_mcp_tools(server_configs_list):
|
26 |
+
global mcp_tools_collection, mcp_client_instances
|
27 |
+
|
28 |
+
# Close any existing client instances before loading new ones
|
29 |
+
for client_instance in mcp_client_instances:
|
30 |
+
try:
|
31 |
+
client_instance.close()
|
32 |
+
print(f"Closed existing MCP client: {client_instance}")
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error closing existing MCP client {client_instance}: {e}")
|
35 |
+
mcp_client_instances = []
|
36 |
+
|
37 |
+
all_discovered_tools = []
|
38 |
+
if not server_configs_list:
|
39 |
+
print("No MCP server configurations provided. Clearing MCP tools.")
|
40 |
+
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
|
41 |
+
return
|
42 |
+
|
43 |
+
print(f"Loading MCP tools from {len(server_configs_list)} server configurations...")
|
44 |
+
for config in server_configs_list:
|
45 |
+
server_name = config.get('name', config.get('url', 'Unknown Server'))
|
46 |
+
try:
|
47 |
+
if config.get("type") == "sse":
|
48 |
+
sse_url = config["url"]
|
49 |
+
print(f"Attempting to connect to MCP SSE server: {server_name} at {sse_url}")
|
50 |
+
|
51 |
+
# Using SmolMCPClient for SSE servers as shown in documentation
|
52 |
+
# The constructor expects server_parameters={"url": sse_url}
|
53 |
+
smol_mcp_client = SmolMCPClient(server_parameters={"url": sse_url})
|
54 |
+
mcp_client_instances.append(smol_mcp_client) # Keep track to close later
|
55 |
+
|
56 |
+
discovered_tools_from_server = smol_mcp_client.get_tools() # Returns a list of Tool objects
|
57 |
+
|
58 |
+
if discovered_tools_from_server:
|
59 |
+
all_discovered_tools.extend(list(discovered_tools_from_server))
|
60 |
+
print(f"Discovered {len(discovered_tools_from_server)} tools from {server_name}.")
|
61 |
+
else:
|
62 |
+
print(f"No tools discovered from {server_name}.")
|
63 |
+
# Add elif for "stdio" type if needed in the future, though it's more complex for Gradio apps
|
64 |
+
else:
|
65 |
+
print(f"Unsupported MCP server type '{config.get('type')}' for {server_name}. Skipping.")
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error loading MCP tools from {server_name}: {e}")
|
68 |
+
|
69 |
+
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
|
70 |
+
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
|
71 |
+
print(f"Successfully loaded a total of {len(mcp_tools_collection.tools)} MCP tools:")
|
72 |
+
for tool in mcp_tools_collection.tools:
|
73 |
+
print(f" - {tool.name}: {tool.description[:100]}...") # Print short description
|
74 |
+
else:
|
75 |
+
print("No MCP tools were loaded, or an error occurred.")
|
76 |
+
|
77 |
+
def cleanup_mcp_client_instances_on_exit():
|
78 |
+
global mcp_client_instances
|
79 |
+
print("Attempting to clean up MCP client instances on application exit...")
|
80 |
+
for client_instance in mcp_client_instances:
|
81 |
+
try:
|
82 |
+
client_instance.close()
|
83 |
+
print(f"Closed MCP client: {client_instance}")
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error closing MCP client {client_instance} on exit: {e}")
|
86 |
+
mcp_client_instances = []
|
87 |
+
print("MCP client cleanup finished.")
|
88 |
+
|
89 |
+
atexit.register(cleanup_mcp_client_instances_on_exit)
|
90 |
+
# --- End MCP Client Integration ---
|
91 |
+
|
92 |
+
# Function to encode image to base64 (remains the same)
|
93 |
def encode_image(image_path):
|
94 |
if not image_path:
|
95 |
+
print("No image path provided")
|
96 |
return None
|
97 |
|
98 |
try:
|
99 |
+
print(f"Encoding image from path: {image_path}")
|
|
|
|
|
100 |
if isinstance(image_path, Image.Image):
|
101 |
image = image_path
|
102 |
else:
|
|
|
103 |
image = Image.open(image_path)
|
104 |
|
|
|
105 |
if image.mode == 'RGBA':
|
106 |
image = image.convert('RGB')
|
107 |
|
|
|
108 |
buffered = io.BytesIO()
|
109 |
image.save(buffered, format="JPEG")
|
110 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
111 |
+
print("Image encoded successfully")
|
112 |
return img_str
|
113 |
except Exception as e:
|
114 |
+
print(f"Error encoding image: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
return None
|
116 |
|
117 |
+
# Modified respond function
|
118 |
def respond(
|
119 |
+
message_input_text, # From multimodal textbox's text part
|
120 |
+
image_files_list, # From multimodal textbox's files part
|
121 |
history: list[tuple[str, str]],
|
122 |
system_message,
|
123 |
max_tokens,
|
|
|
128 |
provider,
|
129 |
custom_api_key,
|
130 |
custom_model,
|
131 |
+
model_search_term, # Not directly used in this function but passed by UI
|
132 |
+
selected_model # From radio
|
|
|
|
|
133 |
):
|
134 |
+
global mcp_tools_collection # Access the loaded MCP tools
|
135 |
+
|
136 |
+
print(f"Received message text: {message_input_text}")
|
137 |
+
print(f"Received {len(image_files_list) if image_files_list else 0} images")
|
138 |
+
# ... (keep other prints for debugging)
|
139 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
141 |
+
hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
|
142 |
+
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
143 |
+
|
144 |
+
if seed == -1: seed = None
|
145 |
+
|
146 |
+
# --- Prepare current user message (potentially multimodal) ---
|
147 |
+
current_user_content_parts = []
|
148 |
+
if message_input_text and message_input_text.strip():
|
149 |
+
current_user_content_parts.append({"type": "text", "text": message_input_text.strip()})
|
150 |
|
151 |
+
if image_files_list:
|
152 |
+
for img_path in image_files_list:
|
153 |
+
if img_path: # img_path is the path to the uploaded file
|
154 |
+
encoded_img = encode_image(img_path)
|
155 |
+
if encoded_img:
|
156 |
+
current_user_content_parts.append({
|
157 |
+
"type": "image_url",
|
158 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
if not current_user_content_parts: # If message is truly empty
|
162 |
+
print("Skipping empty message.")
|
163 |
+
for item in history: yield item # hack to make gradio update with history
|
164 |
+
return
|
165 |
|
166 |
+
# --- Construct messages for LLM ---
|
167 |
+
llm_messages = [{"role": "system", "content": system_message}]
|
168 |
+
for hist_user, hist_assistant in history:
|
169 |
+
# Assuming history user part is already formatted (string or list of dicts)
|
170 |
+
if hist_user:
|
171 |
+
# Handle complex history items (tuples of text, list_of_image_paths)
|
172 |
+
if isinstance(hist_user, tuple) and len(hist_user) == 2:
|
173 |
+
hist_user_text, hist_user_images = hist_user
|
174 |
+
hist_user_parts = []
|
175 |
+
if hist_user_text: hist_user_parts.append({"type": "text", "text": hist_user_text})
|
176 |
+
for img_p in hist_user_images:
|
177 |
+
enc_img = encode_image(img_p)
|
178 |
+
if enc_img: hist_user_parts.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{enc_img}"}})
|
179 |
+
if hist_user_parts: llm_messages.append({"role": "user", "content": hist_user_parts})
|
180 |
+
elif isinstance(hist_user, str): # Simple text history
|
181 |
+
llm_messages.append({"role": "user", "content": hist_user})
|
182 |
+
# else: could be already formatted list of dicts from previous multimodal turn
|
183 |
+
|
184 |
+
if hist_assistant:
|
185 |
+
llm_messages.append({"role": "assistant", "content": hist_assistant})
|
186 |
+
|
187 |
+
llm_messages.append({"role": "user", "content": current_user_content_parts if len(current_user_content_parts) > 1 else current_user_content_parts[0] if current_user_content_parts else ""})
|
188 |
+
|
189 |
+
model_to_use = custom_model.strip() if custom_model.strip() else selected_model
|
190 |
+
print(f"Model selected for inference: {model_to_use}")
|
191 |
+
|
192 |
+
# --- Agent Logic or Direct LLM Call ---
|
193 |
+
active_mcp_tools = list(mcp_tools_collection.tools) if mcp_tools_collection else []
|
194 |
+
|
195 |
+
if active_mcp_tools:
|
196 |
+
print(f"MCP tools are active ({len(active_mcp_tools)} tools). Using CodeAgent.")
|
197 |
+
|
198 |
+
# Wrapper for smolagents.CodeAgent to use our configured HF InferenceClient
|
199 |
+
class HFClientWrapperForAgent:
|
200 |
+
def __init__(self, hf_client, model_id, outer_scope_params):
|
201 |
+
self.client = hf_client
|
202 |
+
self.model_id = model_id
|
203 |
+
self.params = outer_scope_params
|
204 |
+
|
205 |
+
def generate(self, agent_llm_messages, tools=None, tool_choice=None, **kwargs):
|
206 |
+
# agent_llm_messages is from the agent. tools/tool_choice also from agent.
|
207 |
+
api_params = {
|
208 |
+
"model": self.model_id,
|
209 |
+
"messages": agent_llm_messages,
|
210 |
+
"stream": False, # CodeAgent's .run() expects a full response object
|
211 |
+
"max_tokens": self.params['max_tokens'],
|
212 |
+
"temperature": self.params['temperature'],
|
213 |
+
"top_p": self.params['top_p'],
|
214 |
+
"frequency_penalty": self.params['frequency_penalty'],
|
215 |
+
}
|
216 |
+
if self.params['seed'] is not None: api_params["seed"] = self.params['seed']
|
217 |
+
if tools: api_params["tools"] = tools
|
218 |
+
if tool_choice: api_params["tool_choice"] = tool_choice
|
219 |
+
|
220 |
+
print(f"Agent's HFClientWrapper calling LLM: {self.model_id}")
|
221 |
+
completion = self.client.chat_completion(**api_params)
|
222 |
+
return completion
|
223 |
|
224 |
+
outer_scope_llm_params = {
|
225 |
+
"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p,
|
226 |
+
"frequency_penalty": frequency_penalty, "seed": seed
|
227 |
+
}
|
228 |
+
agent_model_adapter = HFClientWrapperForAgent(hf_inference_client, model_to_use, outer_scope_llm_params)
|
229 |
+
|
230 |
+
agent = CodeAgent(tools=active_mcp_tools, model=agent_model_adapter)
|
231 |
+
|
232 |
+
# Prime agent with history (all messages except the current user query)
|
233 |
+
agent.messages = llm_messages[:-1]
|
234 |
+
|
235 |
+
# CodeAgent.run expects a string query. Extract text from current user message.
|
236 |
+
current_query_for_agent = message_input_text.strip() if message_input_text else "User provided image(s)."
|
237 |
+
if not current_query_for_agent and image_files_list: # If only image, provide a generic text
|
238 |
+
current_query_for_agent = "Describe the image(s) or follow instructions related to them."
|
239 |
+
elif not current_query_for_agent and not image_files_list: # Should not happen due to earlier check
|
240 |
+
current_query_for_agent = "..."
|
241 |
|
242 |
+
|
243 |
+
print(f"Query for CodeAgent.run: '{current_query_for_agent}' with {len(agent.messages)} history messages.")
|
244 |
+
try:
|
245 |
+
agent_final_text_response = agent.run(current_query_for_agent)
|
246 |
+
# Note: agent.run() is blocking and returns the final string.
|
247 |
+
# It won't stream token by token if tools are used.
|
248 |
+
yield agent_final_text_response
|
249 |
+
print("Completed response generation via CodeAgent.")
|
250 |
+
except Exception as e:
|
251 |
+
print(f"Error during CodeAgent execution: {e}")
|
252 |
+
yield f"Error using tools: {str(e)}"
|
253 |
+
return
|
254 |
+
|
255 |
+
else: # No MCP tools, use original streaming logic
|
256 |
+
print("No MCP tools active. Proceeding with direct LLM call (streaming).")
|
257 |
+
response_stream_content = ""
|
258 |
+
try:
|
259 |
+
stream = hf_inference_client.chat_completion(
|
260 |
+
model=model_to_use,
|
261 |
+
messages=llm_messages,
|
262 |
+
stream=True,
|
263 |
+
max_tokens=max_tokens, temperature=temperature, top_p=top_p,
|
264 |
+
frequency_penalty=frequency_penalty, seed=seed
|
265 |
+
)
|
266 |
+
for chunk in stream:
|
267 |
+
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
268 |
+
delta = chunk.choices[0].delta
|
269 |
+
if hasattr(delta, 'content') and delta.content:
|
270 |
+
token_text = delta.content
|
271 |
+
response_stream_content += token_text
|
272 |
+
yield response_stream_content
|
273 |
+
print("\nCompleted streaming response generation.")
|
274 |
+
except Exception as e:
|
275 |
+
print(f"Error during direct LLM inference: {e}")
|
276 |
+
yield response_stream_content + f"\nError: {str(e)}"
|
277 |
+
|
278 |
+
# Function to validate provider (remains the same)
|
279 |
def validate_provider(api_key, provider):
|
280 |
if not api_key.strip() and provider != "hf-inference":
|
281 |
return gr.update(value="hf-inference")
|
282 |
return gr.update(value=provider)
|
283 |
|
|
|
|
|
|
|
|
|
|
|
284 |
# GRADIO UI
|
285 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
|
286 |
chatbot = gr.Chatbot(
|
287 |
+
label="Serverless TextGen Hub",
|
288 |
+
height=600, show_copy_button=True,
|
289 |
+
placeholder="Select a model, (optionally) load MCP Tools, and begin chatting.",
|
290 |
+
layout="panel",
|
291 |
+
bubble_full_width=False
|
292 |
)
|
|
|
293 |
|
294 |
+
msg_input_box = gr.MultimodalTextbox(
|
|
|
295 |
placeholder="Type a message or upload images...",
|
296 |
+
show_label=False, container=False, scale=12,
|
297 |
+
file_types=["image"], file_count="multiple", sources=["upload"]
|
|
|
|
|
|
|
|
|
298 |
)
|
299 |
|
|
|
300 |
with gr.Accordion("Settings", open=False):
|
301 |
+
system_message_box = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
with gr.Row():
|
303 |
+
# ... (max_tokens, temperature, top_p sliders remain the same)
|
304 |
+
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max tokens")
|
305 |
+
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
306 |
+
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
|
307 |
+
with gr.Row():
|
308 |
+
# ... (frequency_penalty, seed sliders remain the same)
|
309 |
+
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
310 |
+
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
|
311 |
+
|
312 |
+
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
313 |
+
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
|
314 |
+
byok_textbox = gr.Textbox(label="BYOK (Hugging Face API Key)", type="password", placeholder="Enter token if not using 'hf-inference'")
|
315 |
+
custom_model_box = gr.Textbox(label="Custom Model ID", placeholder="org/model-name (overrides selection below)")
|
316 |
+
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...")
|
317 |
+
|
318 |
+
models_list = [ # Keep your extensive model list
|
319 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
|
320 |
+
# ... (include all your models) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
"microsoft/Phi-3-mini-4k-instruct",
|
322 |
]
|
323 |
+
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
|
324 |
+
gr.Markdown("[All Text models](https://huggingface.co/models?pipeline_tag=text-generation) | [All Multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text)")
|
325 |
|
326 |
+
# --- MCP Client Settings UI ---
|
327 |
+
with gr.Accordion("MCP Client Settings (Connect to External Tools)", open=False):
|
328 |
+
gr.Markdown("Configure connections to MCP Servers to allow the LLM to use external tools. The LLM will decide when to use these tools based on your prompts.")
|
329 |
+
mcp_server_config_input = gr.Textbox(
|
330 |
+
label="MCP Server Configurations (JSON Array)",
|
331 |
+
info='Example: [{"name": "MyToolServer", "type": "sse", "url": "http://server_url/gradio_api/mcp/sse"}]',
|
332 |
+
lines=3,
|
333 |
+
placeholder='Enter a JSON list of server configurations here.',
|
334 |
+
value=json.dumps(DEFAULT_MCP_SERVERS, indent=2) # Pre-fill with defaults
|
335 |
)
|
336 |
+
mcp_load_status_display = gr.Textbox(label="MCP Load Status", interactive=False)
|
337 |
+
load_mcp_tools_btn = gr.Button("Load/Reload MCP Tools")
|
338 |
|
339 |
+
def handle_load_mcp_tools_click(config_str_from_ui):
|
340 |
+
if not config_str_from_ui:
|
341 |
+
load_mcp_tools([]) # Clear tools if config is empty
|
342 |
+
return "MCP tool loading attempted with empty config. Tools cleared."
|
343 |
+
try:
|
344 |
+
parsed_configs = json.loads(config_str_from_ui)
|
345 |
+
if not isinstance(parsed_configs, list):
|
346 |
+
return "Error: MCP configuration must be a valid JSON list."
|
347 |
+
load_mcp_tools(parsed_configs) # Call the main loading function
|
348 |
+
|
349 |
+
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
|
350 |
+
loaded_tool_names = [t.name for t in mcp_tools_collection.tools]
|
351 |
+
return f"Successfully loaded {len(loaded_tool_names)} MCP tools: {', '.join(loaded_tool_names)}"
|
352 |
+
else:
|
353 |
+
return "No MCP tools loaded, or an error occurred during loading. Check console for details."
|
354 |
+
except json.JSONDecodeError:
|
355 |
+
return "Error: Invalid JSON format in MCP server configurations."
|
356 |
+
except Exception as e:
|
357 |
+
print(f"Unhandled error in handle_load_mcp_tools_click: {e}")
|
358 |
+
return f"Error loading MCP tools: {str(e)}. Check console."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
+
load_mcp_tools_btn.click(
|
361 |
+
handle_load_mcp_tools_click,
|
362 |
+
inputs=[mcp_server_config_input],
|
363 |
+
outputs=mcp_load_status_display
|
364 |
+
)
|
365 |
+
# --- End MCP Client Settings UI ---
|
366 |
+
|
367 |
+
# Chat history state (remains the same)
|
368 |
+
# chat_history = gr.State([]) # Not explicitly used if chatbot manages history directly
|
369 |
+
|
370 |
+
# Function to filter models (remains the same)
|
371 |
def filter_models(search_term):
|
372 |
+
return gr.update(choices=[m for m in models_list if search_term.lower() in m.lower()])
|
|
|
|
|
|
|
373 |
|
374 |
+
# Function to set custom model from radio (remains the same)
|
375 |
def set_custom_model_from_radio(selected):
|
376 |
+
return selected # Updates custom_model_box with the selected featured model
|
|
|
377 |
|
378 |
+
# Gradio's MultimodalTextbox submit action
|
379 |
+
# The `user` function is simplified as msg_input_box directly gives text and files
|
380 |
+
# The `bot` function is where the main logic of `respond` is called.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
+
def handle_submit(msg_content_dict, current_chat_history):
|
383 |
+
# msg_content_dict = {"text": "...", "files": ["path1", "path2"]}
|
384 |
+
text = msg_content_dict.get("text", "")
|
385 |
+
files = msg_content_dict.get("files", [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
+
# Add user message to history for display
|
388 |
+
# For multimodal, we might want to display text and images separately or combined
|
389 |
+
user_display_entry = []
|
390 |
+
if text:
|
391 |
+
user_display_entry.append(text)
|
392 |
+
if files:
|
393 |
+
# For display, Gradio chatbot can render markdown images
|
394 |
+
for f_path in files:
|
395 |
+
user_display_entry.append(f"")
|
396 |
+
|
397 |
+
# Construct a representation for history that `respond` can unpack
|
398 |
+
# For simplicity, let's pass text and files separately to `respond`
|
399 |
+
# and the history will store the user input as (text, files_list_for_display)
|
400 |
+
|
401 |
+
history_entry_user_part = (text, files) # Store as tuple for `respond` to process easily later
|
402 |
+
current_chat_history.append([history_entry_user_part, None]) # Add user part, assistant is None for now
|
403 |
+
|
404 |
+
# Prepare for streaming response
|
405 |
+
# The `respond` function is a generator
|
406 |
+
assistant_response_accumulator = ""
|
407 |
+
for streamed_chunk in respond(
|
408 |
+
text, files,
|
409 |
+
current_chat_history[:-1], # Pass history *before* current turn
|
410 |
+
system_message_box.value, max_tokens_slider.value, temperature_slider.value,
|
411 |
+
top_p_slider.value, frequency_penalty_slider.value, seed_slider.value,
|
412 |
+
provider_radio.value, byok_textbox.value, custom_model_box.value,
|
413 |
+
model_search_box.value, featured_model_radio.value
|
414 |
+
):
|
415 |
+
assistant_response_accumulator = streamed_chunk
|
416 |
+
current_chat_history[-1][1] = assistant_response_accumulator # Update last assistant message
|
417 |
+
yield current_chat_history, {"text": "", "files": []} # Update chatbot, clear input
|
418 |
+
|
419 |
+
# Final update after stream (already done by last yield)
|
420 |
+
# yield current_chat_history, {"text": "", "files": []}
|
421 |
|
422 |
+
|
423 |
+
msg_input_box.submit(
|
424 |
+
handle_submit,
|
425 |
+
[msg_input_box, chatbot],
|
426 |
+
[chatbot, msg_input_box] # Output to chatbot and clear msg_input_box
|
427 |
)
|
|
|
428 |
|
429 |
+
model_search_box.change(filter_models, model_search_box, featured_model_radio)
|
430 |
+
featured_model_radio.change(set_custom_model_from_radio, featured_model_radio, custom_model_box)
|
431 |
+
byok_textbox.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
|
432 |
+
provider_radio.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
|
|
|
|
|
433 |
|
434 |
+
# Load default MCP tools on startup
|
435 |
+
load_mcp_tools(DEFAULT_MCP_SERVERS)
|
436 |
+
print(f"Initial MCP tools loaded: {len(mcp_tools_collection.tools) if mcp_tools_collection else 0} tools.")
|
437 |
|
438 |
+
print("Gradio interface initialized.")
|
439 |
if __name__ == "__main__":
|
440 |
+
print("Launching the Serverless TextGen Hub demo application.")
|
441 |
+
demo.launch(show_api=False) # show_api can be True if needed for other purposes
|