Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,180 +1,215 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import json
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
|
9 |
-
# Smolagents imports
|
10 |
-
from smolagents import CodeAgent, Tool
|
11 |
-
from smolagents.models import InferenceClientModel as SmolInferenceClientModel
|
12 |
-
# We'll use PIL.Image directly for opening, AgentImage is for agent's internal typing if needed by a tool
|
13 |
-
from smolagents.gradio_ui import pull_messages_from_step # For formatting agent steps
|
14 |
-
from smolagents.memory import ActionStep, FinalAnswerStep, PlanningStep, MemoryStep # For type checking steps
|
15 |
-
from smolagents.models import ChatMessageStreamDelta # For type checking stream deltas
|
16 |
-
|
17 |
-
|
18 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
19 |
print("Access token loaded.")
|
20 |
|
21 |
-
# Function to encode image to base64
|
22 |
-
def encode_image(
|
23 |
-
if not
|
24 |
-
print("No image path
|
25 |
return None
|
26 |
|
27 |
try:
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
|
|
35 |
if image.mode == 'RGBA':
|
36 |
image = image.convert('RGB')
|
37 |
|
|
|
38 |
buffered = io.BytesIO()
|
39 |
-
image.save(buffered, format="JPEG")
|
40 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
41 |
-
|
42 |
return img_str
|
43 |
except Exception as e:
|
44 |
print(f"Error encoding image: {e}")
|
45 |
return None
|
46 |
|
47 |
-
# This function will now set up and run the smolagent
|
48 |
def respond(
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
max_tokens,
|
54 |
temperature,
|
55 |
top_p,
|
56 |
frequency_penalty,
|
57 |
seed,
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
model_search_term,
|
62 |
-
|
63 |
):
|
64 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
model_to_use =
|
|
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
"max_tokens": max_tokens,
|
75 |
-
"temperature": temperature
|
76 |
-
"top_p": top_p
|
77 |
-
"
|
78 |
}
|
79 |
-
if provider_for_agent_llm and provider_for_agent_llm != "hf-inference":
|
80 |
-
agent_llm_params["provider"] = provider_for_agent_llm
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
agent_llm_params["frequency_penalty"] = frequency_penalty
|
85 |
-
|
86 |
-
agent_llm = SmolInferenceClientModel(**agent_llm_params)
|
87 |
-
print(f"Smolagents LLM for agent initialized: model='{model_to_use}', provider='{provider_for_agent_llm or 'default'}'")
|
88 |
|
89 |
-
#
|
90 |
-
agent_tools = []
|
91 |
try:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
97 |
)
|
98 |
-
|
99 |
-
print("
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
stream_outputs=True # Important for Gradio streaming
|
114 |
-
)
|
115 |
-
print("Smolagents CodeAgent initialized.")
|
116 |
-
|
117 |
-
# --- Prepare task and image inputs for the agent ---
|
118 |
-
agent_task_text = message_text
|
119 |
-
|
120 |
-
pil_images_for_agent = []
|
121 |
-
if image_file_paths:
|
122 |
-
for file_path in image_file_paths:
|
123 |
-
try:
|
124 |
-
pil_images_for_agent.append(Image.open(file_path))
|
125 |
-
except Exception as e:
|
126 |
-
print(f"Error opening image file {file_path} for agent: {e}")
|
127 |
-
|
128 |
-
print(f"Agent task: '{agent_task_text}'")
|
129 |
-
if pil_images_for_agent:
|
130 |
-
print(f"Passing {len(pil_images_for_agent)} image(s) to agent.")
|
131 |
-
|
132 |
-
# --- Run the agent and stream response ---
|
133 |
-
# Agent is reset each turn. For conversational memory, agent instance
|
134 |
-
# would need to be stored in session_state and agent.run(..., reset=False) used.
|
135 |
-
|
136 |
-
current_agent_response_text = ""
|
137 |
-
try:
|
138 |
-
# The agent.run method returns a generator when stream=True
|
139 |
-
for step_item in agent.run(
|
140 |
-
task=agent_task_text,
|
141 |
-
images=pil_images_for_agent,
|
142 |
-
stream=True,
|
143 |
-
reset=True # Explicitly reset for stateless operation per call
|
144 |
-
):
|
145 |
-
if isinstance(step_item, ChatMessageStreamDelta):
|
146 |
-
if step_item.content:
|
147 |
-
current_agent_response_text += step_item.content
|
148 |
-
yield current_agent_response_text # Yield accumulated text
|
149 |
-
|
150 |
-
elif isinstance(step_item, (ActionStep, PlanningStep, FinalAnswerStep)):
|
151 |
-
# A structured step. Format it for Gradio.
|
152 |
-
# pull_messages_from_step yields gr.ChatMessage objects.
|
153 |
-
for gradio_chat_msg in pull_messages_from_step(step_item, skip_model_outputs=agent.stream_outputs):
|
154 |
-
# The 'bot' function will handle these gr.ChatMessage objects.
|
155 |
-
yield gradio_chat_msg # Yield the gr.ChatMessage object directly
|
156 |
-
current_agent_response_text = "" # Reset text buffer after a structured step
|
157 |
-
|
158 |
-
# else:
|
159 |
-
# print(f"Unhandled stream item type: {type(step_item)}") # Debug
|
160 |
-
|
161 |
-
# If there's any remaining text not part of a gr.ChatMessage, yield it.
|
162 |
-
# This usually shouldn't happen if stream_to_gradio logic is followed,
|
163 |
-
# as text deltas should be part of the last gr.ChatMessage or yielded before it.
|
164 |
-
# However, if the agent's final textual answer comes as pure deltas after all steps.
|
165 |
-
if current_agent_response_text and not isinstance(step_item, FinalAnswerStep):
|
166 |
-
# Check if the last yielded item already contains this text
|
167 |
-
if not (isinstance(step_item, gr.ChatMessage) and step_item.content == current_agent_response_text):
|
168 |
-
yield current_agent_response_text
|
169 |
-
|
170 |
-
|
171 |
except Exception as e:
|
172 |
-
|
173 |
-
|
174 |
-
yield
|
175 |
-
|
176 |
-
print("Agent run completed.")
|
177 |
|
|
|
178 |
|
179 |
# Function to validate provider selection based on BYOK
|
180 |
def validate_provider(api_key, provider):
|
@@ -184,15 +219,16 @@ def validate_provider(api_key, provider):
|
|
184 |
|
185 |
# GRADIO UI
|
186 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
|
187 |
chatbot = gr.Chatbot(
|
188 |
height=600,
|
189 |
show_copy_button=True,
|
190 |
-
placeholder="Select a model and begin chatting. Now
|
191 |
-
layout="panel"
|
192 |
-
bubble_full_width=False # For better display of images/files
|
193 |
)
|
194 |
print("Chatbot interface created.")
|
195 |
|
|
|
196 |
msg = gr.MultimodalTextbox(
|
197 |
placeholder="Type a message or upload images...",
|
198 |
show_label=False,
|
@@ -203,201 +239,329 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
203 |
sources=["upload"]
|
204 |
)
|
205 |
|
|
|
|
|
|
|
206 |
with gr.Accordion("Settings", open=False):
|
|
|
207 |
system_message_box = gr.Textbox(
|
208 |
-
value="You are a helpful AI assistant
|
209 |
-
placeholder="You are a helpful
|
210 |
-
label="System Prompt
|
211 |
)
|
212 |
|
|
|
213 |
with gr.Row():
|
214 |
with gr.Column():
|
215 |
-
max_tokens_slider = gr.Slider(
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
with gr.Column():
|
219 |
-
frequency_penalty_slider = gr.Slider(
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
|
|
222 |
providers_list = [
|
223 |
-
"hf-inference",
|
224 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
]
|
226 |
-
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider for Agent's LLM")
|
227 |
-
byok_textbox = gr.Textbox(value="", label="BYOK (Your HF Token or Provider API Key)", info="Enter API key for the selected provider. Uses HF_TOKEN if empty.", placeholder="Enter your API token", type="password")
|
228 |
-
custom_model_box = gr.Textbox(value="", label="Custom Model ID for Agent's LLM", info="(Optional) Provide a custom model ID. Overrides featured model.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
|
229 |
-
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search for a featured model...", lines=1)
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
models_list = [
|
232 |
-
"meta-llama/Llama-3.
|
233 |
-
"meta-llama/Llama-3.
|
234 |
-
"meta-llama/Llama-3.1-
|
235 |
-
"
|
236 |
-
"
|
237 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
]
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
242 |
|
243 |
-
# Chat history state
|
244 |
-
|
245 |
-
|
246 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# Function for the chat interface
|
249 |
-
def user(
|
250 |
-
|
251 |
-
|
252 |
-
files = user_multimodal_input_dict.get("files", [])
|
253 |
|
254 |
-
|
255 |
-
if
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
return history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
# The user's input (text and list of file paths) is in history[-1][0]
|
274 |
-
# If `user` function stores the dict:
|
275 |
-
raw_user_input_dict = history[-1][0] if isinstance(history[-1][0], dict) else {"text": str(history[-1][0]), "files": []}
|
276 |
|
277 |
-
#
|
278 |
-
|
279 |
-
|
280 |
-
# Let's adjust the Gradio flow to pass `msg` directly to `bot` as well.
|
281 |
-
|
282 |
-
# The `msg` variable in `msg.submit` holds the raw MultimodalTextbox output.
|
283 |
-
# We need to pass this raw dict to `respond`.
|
284 |
-
# The `history` is for display.
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
# For simplicity, let's assume `user` stores the raw dict if needed,
|
290 |
-
# or `bot` can parse `history[-1][0]` if it's a string/list of tuples.
|
291 |
-
|
292 |
-
# Let's assume `history[-1][0]` is the raw `user_multimodal_input_dict`
|
293 |
-
# This means the `user` function must append it like: `history.append([user_multimodal_input_dict, None])`
|
294 |
-
# And the chatbot will display `str(user_multimodal_input_dict)`.
|
295 |
-
# This is what the current `user` function does.
|
296 |
-
|
297 |
-
user_input_data = history[-1][0] # This should be the dict from MultimodalTextbox
|
298 |
-
text_input_for_agent = user_input_data.get("text", "")
|
299 |
-
# Files from MultimodalTextbox are temp file paths
|
300 |
-
image_file_paths_for_agent = [f.name for f in user_input_data.get("files", []) if hasattr(f, 'name')]
|
301 |
-
|
302 |
-
|
303 |
-
history[-1][1] = "" # Initialize assistant's part for streaming
|
304 |
|
305 |
-
#
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
if
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
#
|
368 |
-
# Its `inputs` are the Gradio components whose values are passed to the function.
|
369 |
-
# Its `outputs` are the Gradio components that are updated by the function's return value.
|
370 |
-
# The `user` function now appends the raw dict from MultimodalTextbox to history.
|
371 |
-
# The `bot` function takes this history.
|
372 |
-
|
373 |
-
# When msg is submitted:
|
374 |
-
# 1. Call `user` to update history with user's input. Output is `chatbot`.
|
375 |
-
# 2. Then call `bot` with the updated history. Output is `chatbot`.
|
376 |
-
# 3. Then clear `msg`
|
377 |
msg.submit(
|
378 |
user,
|
379 |
[msg, chatbot],
|
380 |
-
[chatbot],
|
381 |
queue=False
|
382 |
).then(
|
383 |
bot,
|
384 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
385 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
386 |
model_search_box, featured_model_radio],
|
387 |
-
[chatbot]
|
388 |
).then(
|
389 |
-
lambda: {"text": "", "files": []}, # Clear
|
390 |
None,
|
391 |
[msg]
|
392 |
)
|
393 |
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
print("Gradio interface initialized.")
|
400 |
|
401 |
if __name__ == "__main__":
|
402 |
print("Launching the demo application.")
|
403 |
-
demo.launch(show_api=
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import json
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
10 |
print("Access token loaded.")
|
11 |
|
12 |
+
# Function to encode image to base64
|
13 |
+
def encode_image(image_path):
|
14 |
+
if not image_path:
|
15 |
+
print("No image path provided")
|
16 |
return None
|
17 |
|
18 |
try:
|
19 |
+
print(f"Encoding image from path: {image_path}")
|
20 |
|
21 |
+
# If it's already a PIL Image
|
22 |
+
if isinstance(image_path, Image.Image):
|
23 |
+
image = image_path
|
24 |
+
else:
|
25 |
+
# Try to open the image file
|
26 |
+
image = Image.open(image_path)
|
27 |
|
28 |
+
# Convert to RGB if image has an alpha channel (RGBA)
|
29 |
if image.mode == 'RGBA':
|
30 |
image = image.convert('RGB')
|
31 |
|
32 |
+
# Encode to base64
|
33 |
buffered = io.BytesIO()
|
34 |
+
image.save(buffered, format="JPEG")
|
35 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
36 |
+
print("Image encoded successfully")
|
37 |
return img_str
|
38 |
except Exception as e:
|
39 |
print(f"Error encoding image: {e}")
|
40 |
return None
|
41 |
|
|
|
42 |
def respond(
|
43 |
+
message,
|
44 |
+
image_files, # Changed parameter name and structure
|
45 |
+
history: list[tuple[str, str]],
|
46 |
+
system_message,
|
47 |
max_tokens,
|
48 |
temperature,
|
49 |
top_p,
|
50 |
frequency_penalty,
|
51 |
seed,
|
52 |
+
provider,
|
53 |
+
custom_api_key,
|
54 |
+
custom_model,
|
55 |
+
model_search_term,
|
56 |
+
selected_model
|
57 |
):
|
58 |
+
print(f"Received message: {message}")
|
59 |
+
print(f"Received {len(image_files) if image_files else 0} images")
|
60 |
+
print(f"History: {history}")
|
61 |
+
print(f"System message: {system_message}")
|
62 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
63 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
64 |
+
print(f"Selected provider: {provider}")
|
65 |
+
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
|
66 |
+
print(f"Selected model (custom_model): {custom_model}")
|
67 |
+
print(f"Model search term: {model_search_term}")
|
68 |
+
print(f"Selected model from radio: {selected_model}")
|
69 |
+
|
70 |
+
# Determine which token to use
|
71 |
+
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
72 |
+
|
73 |
+
if custom_api_key.strip() != "":
|
74 |
+
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
75 |
+
else:
|
76 |
+
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
77 |
+
|
78 |
+
# Initialize the Inference Client with the provider and appropriate token
|
79 |
+
client = InferenceClient(token=token_to_use, provider=provider)
|
80 |
+
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
81 |
+
|
82 |
+
# Convert seed to None if -1 (meaning random)
|
83 |
+
if seed == -1:
|
84 |
+
seed = None
|
85 |
+
|
86 |
+
# Create multimodal content if images are present
|
87 |
+
if image_files and len(image_files) > 0:
|
88 |
+
# Process the user message to include images
|
89 |
+
user_content = []
|
90 |
+
|
91 |
+
# Add text part if there is any
|
92 |
+
if message and message.strip():
|
93 |
+
user_content.append({
|
94 |
+
"type": "text",
|
95 |
+
"text": message
|
96 |
+
})
|
97 |
+
|
98 |
+
# Add image parts
|
99 |
+
for img in image_files:
|
100 |
+
if img is not None:
|
101 |
+
# Get raw image data from path
|
102 |
+
try:
|
103 |
+
encoded_image = encode_image(img)
|
104 |
+
if encoded_image:
|
105 |
+
user_content.append({
|
106 |
+
"type": "image_url",
|
107 |
+
"image_url": {
|
108 |
+
"url": f"data:image/jpeg;base64,{encoded_image}"
|
109 |
+
}
|
110 |
+
})
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Error encoding image: {e}")
|
113 |
+
else:
|
114 |
+
# Text-only message
|
115 |
+
user_content = message
|
116 |
+
|
117 |
+
# Prepare messages in the format expected by the API
|
118 |
+
messages = [{"role": "system", "content": system_message}]
|
119 |
+
print("Initial messages array constructed.")
|
120 |
+
|
121 |
+
# Add conversation history to the context
|
122 |
+
for val in history:
|
123 |
+
user_part = val[0]
|
124 |
+
assistant_part = val[1]
|
125 |
+
if user_part:
|
126 |
+
# Handle both text-only and multimodal messages in history
|
127 |
+
if isinstance(user_part, tuple) and len(user_part) == 2:
|
128 |
+
# This is a multimodal message with text and images
|
129 |
+
history_content = []
|
130 |
+
if user_part[0]: # Text
|
131 |
+
history_content.append({
|
132 |
+
"type": "text",
|
133 |
+
"text": user_part[0]
|
134 |
+
})
|
135 |
+
|
136 |
+
for img in user_part[1]: # Images
|
137 |
+
if img:
|
138 |
+
try:
|
139 |
+
encoded_img = encode_image(img)
|
140 |
+
if encoded_img:
|
141 |
+
history_content.append({
|
142 |
+
"type": "image_url",
|
143 |
+
"image_url": {
|
144 |
+
"url": f"data:image/jpeg;base64,{encoded_img}"
|
145 |
+
}
|
146 |
+
})
|
147 |
+
except Exception as e:
|
148 |
+
print(f"Error encoding history image: {e}")
|
149 |
+
|
150 |
+
messages.append({"role": "user", "content": history_content})
|
151 |
+
else:
|
152 |
+
# Regular text message
|
153 |
+
messages.append({"role": "user", "content": user_part})
|
154 |
+
print(f"Added user message to context (type: {type(user_part)})")
|
155 |
+
|
156 |
+
if assistant_part:
|
157 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
158 |
+
print(f"Added assistant message to context: {assistant_part}")
|
159 |
+
|
160 |
+
# Append the latest user message
|
161 |
+
messages.append({"role": "user", "content": user_content})
|
162 |
+
print(f"Latest user message appended (content type: {type(user_content)})")
|
163 |
|
164 |
+
# Determine which model to use, prioritizing custom_model if provided
|
165 |
+
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
166 |
+
print(f"Model selected for inference: {model_to_use}")
|
167 |
|
168 |
+
# Start with an empty string to build the response as tokens stream in
|
169 |
+
response = ""
|
170 |
+
print(f"Sending request to {provider} provider.")
|
171 |
+
|
172 |
+
# Prepare parameters for the chat completion request
|
173 |
+
parameters = {
|
174 |
"max_tokens": max_tokens,
|
175 |
+
"temperature": temperature,
|
176 |
+
"top_p": top_p,
|
177 |
+
"frequency_penalty": frequency_penalty,
|
178 |
}
|
|
|
|
|
179 |
|
180 |
+
if seed is not None:
|
181 |
+
parameters["seed"] = seed
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
# Use the InferenceClient for making the request
|
|
|
184 |
try:
|
185 |
+
# Create a generator for the streaming response
|
186 |
+
stream = client.chat_completion(
|
187 |
+
model=model_to_use,
|
188 |
+
messages=messages,
|
189 |
+
stream=True,
|
190 |
+
**parameters
|
191 |
)
|
192 |
+
|
193 |
+
print("Received tokens: ", end="", flush=True)
|
194 |
+
|
195 |
+
# Process the streaming response
|
196 |
+
for chunk in stream:
|
197 |
+
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
198 |
+
# Extract the content from the response
|
199 |
+
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
200 |
+
token_text = chunk.choices[0].delta.content
|
201 |
+
if token_text:
|
202 |
+
print(token_text, end="", flush=True)
|
203 |
+
response += token_text
|
204 |
+
yield response
|
205 |
+
|
206 |
+
print()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
except Exception as e:
|
208 |
+
print(f"Error during inference: {e}")
|
209 |
+
response += f"\nError: {str(e)}"
|
210 |
+
yield response
|
|
|
|
|
211 |
|
212 |
+
print("Completed response generation.")
|
213 |
|
214 |
# Function to validate provider selection based on BYOK
|
215 |
def validate_provider(api_key, provider):
|
|
|
219 |
|
220 |
# GRADIO UI
|
221 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
222 |
+
# Create the chatbot component
|
223 |
chatbot = gr.Chatbot(
|
224 |
height=600,
|
225 |
show_copy_button=True,
|
226 |
+
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
|
227 |
+
layout="panel"
|
|
|
228 |
)
|
229 |
print("Chatbot interface created.")
|
230 |
|
231 |
+
# Multimodal textbox for messages (combines text and file uploads)
|
232 |
msg = gr.MultimodalTextbox(
|
233 |
placeholder="Type a message or upload images...",
|
234 |
show_label=False,
|
|
|
239 |
sources=["upload"]
|
240 |
)
|
241 |
|
242 |
+
# Note: We're removing the separate submit button since MultimodalTextbox has its own
|
243 |
+
|
244 |
+
# Create accordion for settings
|
245 |
with gr.Accordion("Settings", open=False):
|
246 |
+
# System message
|
247 |
system_message_box = gr.Textbox(
|
248 |
+
value="You are a helpful AI assistant that can understand images and text.",
|
249 |
+
placeholder="You are a helpful assistant.",
|
250 |
+
label="System Prompt"
|
251 |
)
|
252 |
|
253 |
+
# Generation parameters
|
254 |
with gr.Row():
|
255 |
with gr.Column():
|
256 |
+
max_tokens_slider = gr.Slider(
|
257 |
+
minimum=1,
|
258 |
+
maximum=4096,
|
259 |
+
value=512,
|
260 |
+
step=1,
|
261 |
+
label="Max tokens"
|
262 |
+
)
|
263 |
+
|
264 |
+
temperature_slider = gr.Slider(
|
265 |
+
minimum=0.1,
|
266 |
+
maximum=4.0,
|
267 |
+
value=0.7,
|
268 |
+
step=0.1,
|
269 |
+
label="Temperature"
|
270 |
+
)
|
271 |
+
|
272 |
+
top_p_slider = gr.Slider(
|
273 |
+
minimum=0.1,
|
274 |
+
maximum=1.0,
|
275 |
+
value=0.95,
|
276 |
+
step=0.05,
|
277 |
+
label="Top-P"
|
278 |
+
)
|
279 |
+
|
280 |
with gr.Column():
|
281 |
+
frequency_penalty_slider = gr.Slider(
|
282 |
+
minimum=-2.0,
|
283 |
+
maximum=2.0,
|
284 |
+
value=0.0,
|
285 |
+
step=0.1,
|
286 |
+
label="Frequency Penalty"
|
287 |
+
)
|
288 |
+
|
289 |
+
seed_slider = gr.Slider(
|
290 |
+
minimum=-1,
|
291 |
+
maximum=65535,
|
292 |
+
value=-1,
|
293 |
+
step=1,
|
294 |
+
label="Seed (-1 for random)"
|
295 |
+
)
|
296 |
|
297 |
+
# Provider selection
|
298 |
providers_list = [
|
299 |
+
"hf-inference", # Default Hugging Face Inference
|
300 |
+
"cerebras", # Cerebras provider
|
301 |
+
"together", # Together AI
|
302 |
+
"sambanova", # SambaNova
|
303 |
+
"novita", # Novita AI
|
304 |
+
"cohere", # Cohere
|
305 |
+
"fireworks-ai", # Fireworks AI
|
306 |
+
"hyperbolic", # Hyperbolic
|
307 |
+
"nebius", # Nebius
|
308 |
]
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
provider_radio = gr.Radio(
|
311 |
+
choices=providers_list,
|
312 |
+
value="hf-inference",
|
313 |
+
label="Inference Provider",
|
314 |
+
)
|
315 |
+
|
316 |
+
# New BYOK textbox
|
317 |
+
byok_textbox = gr.Textbox(
|
318 |
+
value="",
|
319 |
+
label="BYOK (Bring Your Own Key)",
|
320 |
+
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
321 |
+
placeholder="Enter your Hugging Face API token",
|
322 |
+
type="password" # Hide the API key for security
|
323 |
+
)
|
324 |
+
|
325 |
+
# Custom model box
|
326 |
+
custom_model_box = gr.Textbox(
|
327 |
+
value="",
|
328 |
+
label="Custom Model",
|
329 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
330 |
+
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
331 |
+
)
|
332 |
+
|
333 |
+
# Model search
|
334 |
+
model_search_box = gr.Textbox(
|
335 |
+
label="Filter Models",
|
336 |
+
placeholder="Search for a featured model...",
|
337 |
+
lines=1
|
338 |
+
)
|
339 |
+
|
340 |
+
# Featured models list
|
341 |
+
# Updated to include multimodal models
|
342 |
models_list = [
|
343 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
344 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
345 |
+
"meta-llama/Llama-3.1-70B-Instruct",
|
346 |
+
"meta-llama/Llama-3.0-70B-Instruct",
|
347 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
348 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
349 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
350 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
351 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
352 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
353 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
354 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
355 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
356 |
+
"Qwen/Qwen3-235B-A22B",
|
357 |
+
"Qwen/Qwen3-32B",
|
358 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
359 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
360 |
+
"Qwen/Qwen2.5-0.5B-Instruct",
|
361 |
+
"Qwen/QwQ-32B",
|
362 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
363 |
+
"microsoft/Phi-3.5-mini-instruct",
|
364 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
365 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
366 |
]
|
367 |
+
|
368 |
+
featured_model_radio = gr.Radio(
|
369 |
+
label="Select a model below",
|
370 |
+
choices=models_list,
|
371 |
+
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
|
372 |
+
interactive=True
|
373 |
+
)
|
374 |
|
375 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
376 |
|
377 |
+
# Chat history state
|
378 |
+
chat_history = gr.State([])
|
379 |
+
|
380 |
+
# Function to filter models
|
381 |
+
def filter_models(search_term):
|
382 |
+
print(f"Filtering models with search term: {search_term}")
|
383 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
384 |
+
print(f"Filtered models: {filtered}")
|
385 |
+
return gr.update(choices=filtered)
|
386 |
+
|
387 |
+
# Function to set custom model from radio
|
388 |
+
def set_custom_model_from_radio(selected):
|
389 |
+
print(f"Featured model selected: {selected}")
|
390 |
+
return selected
|
391 |
|
392 |
# Function for the chat interface
|
393 |
+
def user(user_message, history):
|
394 |
+
# Debug logging for troubleshooting
|
395 |
+
print(f"User message received: {user_message}")
|
|
|
396 |
|
397 |
+
# Skip if message is empty (no text and no files)
|
398 |
+
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
399 |
+
print("Empty message, skipping")
|
400 |
+
return history
|
401 |
+
|
402 |
+
# Prepare multimodal message format
|
403 |
+
text_content = user_message.get("text", "").strip()
|
404 |
+
files = user_message.get("files", [])
|
405 |
+
|
406 |
+
print(f"Text content: {text_content}")
|
407 |
+
print(f"Files: {files}")
|
408 |
+
|
409 |
+
# If both text and files are empty, skip
|
410 |
+
if not text_content and not files:
|
411 |
+
print("No content to display")
|
412 |
return history
|
413 |
+
|
414 |
+
# Add message with images to history
|
415 |
+
if files and len(files) > 0:
|
416 |
+
# Add text message first if it exists
|
417 |
+
if text_content:
|
418 |
+
# Add a separate text message
|
419 |
+
print(f"Adding text message: {text_content}")
|
420 |
+
history.append([text_content, None])
|
421 |
|
422 |
+
# Then add each image file separately
|
423 |
+
for file_path in files:
|
424 |
+
if file_path and isinstance(file_path, str):
|
425 |
+
print(f"Adding image: {file_path}")
|
426 |
+
# Add image as a separate message with no text
|
427 |
+
history.append([f"", None])
|
428 |
+
|
429 |
+
return history
|
430 |
+
else:
|
431 |
+
# For text-only messages
|
432 |
+
print(f"Adding text-only message: {text_content}")
|
433 |
+
history.append([text_content, None])
|
434 |
+
return history
|
435 |
+
|
436 |
+
# Define bot response function
|
437 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
438 |
+
# Check if history is valid
|
439 |
+
if not history or len(history) == 0:
|
440 |
+
print("No history to process")
|
441 |
+
return history
|
|
|
|
|
|
|
442 |
|
443 |
+
# Get the most recent message and detect if it's an image
|
444 |
+
user_message = history[-1][0]
|
445 |
+
print(f"Processing user message: {user_message}")
|
|
|
|
|
|
|
|
|
|
|
446 |
|
447 |
+
is_image = False
|
448 |
+
image_path = None
|
449 |
+
text_content = user_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
|
451 |
+
# Check if this is an image message (marked with ![Image])
|
452 |
+
if isinstance(user_message, str) and user_message.startswith(":
|
453 |
+
is_image = True
|
454 |
+
# Extract image path from markdown format 
|
455 |
+
image_path = user_message.replace(".replace(")", "")
|
456 |
+
print(f"Image detected: {image_path}")
|
457 |
+
text_content = "" # No text for image-only messages
|
458 |
+
|
459 |
+
# Look back for text context if this is an image
|
460 |
+
text_context = ""
|
461 |
+
if is_image and len(history) > 1:
|
462 |
+
# Use the previous message as context if it's text
|
463 |
+
prev_message = history[-2][0]
|
464 |
+
if isinstance(prev_message, str) and not prev_message.startswith(":
|
465 |
+
text_context = prev_message
|
466 |
+
print(f"Using text context from previous message: {text_context}")
|
467 |
+
|
468 |
+
# Process message through respond function
|
469 |
+
history[-1][1] = ""
|
470 |
+
|
471 |
+
# Use either the image or text for the API
|
472 |
+
if is_image:
|
473 |
+
# For image messages
|
474 |
+
for response in respond(
|
475 |
+
text_context, # Text context from previous message if any
|
476 |
+
[image_path], # Current image
|
477 |
+
history[:-1], # Previous history
|
478 |
+
system_msg,
|
479 |
+
max_tokens,
|
480 |
+
temperature,
|
481 |
+
top_p,
|
482 |
+
freq_penalty,
|
483 |
+
seed,
|
484 |
+
provider,
|
485 |
+
api_key,
|
486 |
+
custom_model,
|
487 |
+
search_term,
|
488 |
+
selected_model
|
489 |
+
):
|
490 |
+
history[-1][1] = response
|
491 |
+
yield history
|
492 |
+
else:
|
493 |
+
# For text-only messages
|
494 |
+
for response in respond(
|
495 |
+
text_content, # Text message
|
496 |
+
None, # No image
|
497 |
+
history[:-1], # Previous history
|
498 |
+
system_msg,
|
499 |
+
max_tokens,
|
500 |
+
temperature,
|
501 |
+
top_p,
|
502 |
+
freq_penalty,
|
503 |
+
seed,
|
504 |
+
provider,
|
505 |
+
api_key,
|
506 |
+
custom_model,
|
507 |
+
search_term,
|
508 |
+
selected_model
|
509 |
+
):
|
510 |
+
history[-1][1] = response
|
511 |
+
yield history
|
512 |
+
|
513 |
+
# Event handlers - only using the MultimodalTextbox's built-in submit functionality
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
msg.submit(
|
515 |
user,
|
516 |
[msg, chatbot],
|
517 |
+
[chatbot],
|
518 |
queue=False
|
519 |
).then(
|
520 |
bot,
|
521 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
522 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
523 |
model_search_box, featured_model_radio],
|
524 |
+
[chatbot]
|
525 |
).then(
|
526 |
+
lambda: {"text": "", "files": []}, # Clear inputs after submission
|
527 |
None,
|
528 |
[msg]
|
529 |
)
|
530 |
|
531 |
+
# Connect the model filter to update the radio choices
|
532 |
+
model_search_box.change(
|
533 |
+
fn=filter_models,
|
534 |
+
inputs=model_search_box,
|
535 |
+
outputs=featured_model_radio
|
536 |
+
)
|
537 |
+
print("Model search box change event linked.")
|
538 |
+
|
539 |
+
# Connect the featured model radio to update the custom model box
|
540 |
+
featured_model_radio.change(
|
541 |
+
fn=set_custom_model_from_radio,
|
542 |
+
inputs=featured_model_radio,
|
543 |
+
outputs=custom_model_box
|
544 |
+
)
|
545 |
+
print("Featured model radio button change event linked.")
|
546 |
+
|
547 |
+
# Connect the BYOK textbox to validate provider selection
|
548 |
+
byok_textbox.change(
|
549 |
+
fn=validate_provider,
|
550 |
+
inputs=[byok_textbox, provider_radio],
|
551 |
+
outputs=provider_radio
|
552 |
+
)
|
553 |
+
print("BYOK textbox change event linked.")
|
554 |
+
|
555 |
+
# Also validate provider when the radio changes to ensure consistency
|
556 |
+
provider_radio.change(
|
557 |
+
fn=validate_provider,
|
558 |
+
inputs=[byok_textbox, provider_radio],
|
559 |
+
outputs=provider_radio
|
560 |
+
)
|
561 |
+
print("Provider radio button change event linked.")
|
562 |
|
563 |
print("Gradio interface initialized.")
|
564 |
|
565 |
if __name__ == "__main__":
|
566 |
print("Launching the demo application.")
|
567 |
+
demo.launch(show_api=True)
|