Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,224 +1,353 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
server_url: The URL of the MCP server to connect to
|
23 |
-
"""
|
24 |
-
self.server_url = server_url
|
25 |
-
self.session_id = None
|
26 |
-
logger.info(f"Initialized MCP Client for server: {server_url}")
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
try:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
logger.info(f"Connected to MCP server with session ID: {self.session_id}")
|
48 |
-
return True
|
49 |
else:
|
50 |
-
|
51 |
-
return False
|
52 |
except Exception as e:
|
53 |
-
|
54 |
-
return False
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
""
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
result = response.json()
|
77 |
-
tools = result.get("tools", [])
|
78 |
-
logger.info(f"Retrieved {len(tools)} tools from MCP server")
|
79 |
-
return tools
|
80 |
-
else:
|
81 |
-
logger.error(f"Failed to list tools: {response.status_code} - {response.text}")
|
82 |
-
return []
|
83 |
-
except Exception as e:
|
84 |
-
logger.error(f"Error listing tools: {e}")
|
85 |
-
return []
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
try:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
json={"name": tool_name, "arguments": args},
|
108 |
-
timeout=30 # Longer timeout for tool calls
|
109 |
)
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
return {"error": error_msg}
|
119 |
except Exception as e:
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
try:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
except Exception as e:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
def
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
Returns:
|
146 |
-
Dict[str, Dict[str, str]]: Map of server names to server configurations
|
147 |
-
"""
|
148 |
-
try:
|
149 |
-
mcp_config = os.getenv("MCP_CONFIG")
|
150 |
-
if mcp_config:
|
151 |
-
servers = json.loads(mcp_config)
|
152 |
-
logger.info(f"Loaded {len(servers)} MCP servers from configuration")
|
153 |
-
return servers
|
154 |
-
else:
|
155 |
-
logger.warning("No MCP configuration found")
|
156 |
-
return {}
|
157 |
-
except Exception as e:
|
158 |
-
logger.error(f"Error loading MCP configuration: {e}")
|
159 |
-
return {}
|
160 |
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
"""
|
173 |
-
servers = get_mcp_servers()
|
174 |
-
|
175 |
-
if not server_name or server_name not in servers:
|
176 |
-
logger.warning(f"TTS server {server_name} not configured")
|
177 |
-
return None
|
178 |
-
|
179 |
-
server_url = servers[server_name].get("url")
|
180 |
-
if not server_url:
|
181 |
-
logger.warning(f"No URL found for TTS server {server_name}")
|
182 |
-
return None
|
183 |
-
|
184 |
-
client = MCPClient(server_url)
|
185 |
-
|
186 |
-
try:
|
187 |
-
# List available tools to find the TTS tool
|
188 |
-
tools = client.list_tools()
|
189 |
-
|
190 |
-
# Find a TTS tool - look for common TTS tool names
|
191 |
-
tts_tool = next(
|
192 |
-
(t for t in tools if any(
|
193 |
-
name in t["name"].lower()
|
194 |
-
for name in ["text_to_audio", "tts", "text_to_speech", "speech"]
|
195 |
-
)),
|
196 |
-
None
|
197 |
-
)
|
198 |
-
|
199 |
-
if not tts_tool:
|
200 |
-
logger.warning(f"No TTS tool found on server {server_name}")
|
201 |
-
return None
|
202 |
-
|
203 |
-
# Call the TTS tool
|
204 |
-
result = client.call_tool(tts_tool["name"], {"text": text, "speed": 1.0})
|
205 |
-
|
206 |
-
if "error" in result:
|
207 |
-
logger.error(f"TTS error: {result['error']}")
|
208 |
-
return None
|
209 |
|
210 |
-
|
211 |
-
audio_data = result.get("audio") or result.get("content") or result.get("result")
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import json
|
5 |
+
import base64
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import atexit
|
9 |
+
|
10 |
+
from smolagents import ToolCollection, CodeAgent
|
11 |
+
from smolagents.mcp_client import MCPClient as SmolMCPClient
|
12 |
+
|
13 |
+
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
14 |
+
print("Access token loaded.")
|
15 |
+
|
16 |
+
mcp_tools_collection = ToolCollection(tools=[])
|
17 |
+
mcp_client_instances = []
|
18 |
+
|
19 |
+
DEFAULT_MCP_SERVERS = [
|
20 |
+
{"name": "KokoroTTS (Example)", "type": "sse", "url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"}
|
21 |
+
]
|
22 |
+
|
23 |
+
def load_mcp_tools(server_configs_list):
|
24 |
+
global mcp_tools_collection, mcp_client_instances
|
25 |
|
26 |
+
# No explicit close for SmolMCPClient instances as it's not available directly
|
27 |
+
# Rely on script termination or GC for now.
|
28 |
+
# If you were using ToolCollection per server: tc.close() would be the way.
|
29 |
+
print(f"Clearing {len(mcp_client_instances)} previous MCP client instance references.")
|
30 |
+
mcp_client_instances = [] # Clear references; old objects will be GC'd if not referenced elsewhere
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
all_discovered_tools = []
|
33 |
+
if not server_configs_list:
|
34 |
+
print("No MCP server configurations provided. Clearing MCP tools.")
|
35 |
+
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
|
36 |
+
return
|
37 |
+
|
38 |
+
print(f"Loading MCP tools from {len(server_configs_list)} server configurations...")
|
39 |
+
for config in server_configs_list:
|
40 |
+
server_name = config.get('name', config.get('url', 'Unknown Server'))
|
41 |
try:
|
42 |
+
if config.get("type") == "sse":
|
43 |
+
sse_url = config["url"]
|
44 |
+
print(f"Attempting to connect to MCP SSE server: {server_name} at {sse_url}")
|
45 |
+
smol_mcp_client = SmolMCPClient(server_parameters={"url": sse_url})
|
46 |
+
mcp_client_instances.append(smol_mcp_client)
|
47 |
+
discovered_tools_from_server = smol_mcp_client.get_tools()
|
48 |
+
if discovered_tools_from_server:
|
49 |
+
all_discovered_tools.extend(list(discovered_tools_from_server))
|
50 |
+
print(f"Discovered {len(discovered_tools_from_server)} tools from {server_name}.")
|
51 |
+
else:
|
52 |
+
print(f"No tools discovered from {server_name}.")
|
|
|
|
|
53 |
else:
|
54 |
+
print(f"Unsupported MCP server type '{config.get('type')}' for {server_name}. Skipping.")
|
|
|
55 |
except Exception as e:
|
56 |
+
print(f"Error loading MCP tools from {server_name}: {e}")
|
|
|
57 |
|
58 |
+
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
|
59 |
+
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
|
60 |
+
print(f"Successfully loaded a total of {len(mcp_tools_collection.tools)} MCP tools:")
|
61 |
+
for tool in mcp_tools_collection.tools:
|
62 |
+
print(f" - {tool.name}: {tool.description[:100]}...")
|
63 |
+
else:
|
64 |
+
print("No MCP tools were loaded, or an error occurred.")
|
65 |
+
|
66 |
+
def cleanup_mcp_client_instances_on_exit():
|
67 |
+
global mcp_client_instances
|
68 |
+
print("Attempting to clear MCP client instance references on application exit...")
|
69 |
+
# No explicit close called here as per previous fix
|
70 |
+
mcp_client_instances = []
|
71 |
+
print("MCP client instance reference cleanup finished.")
|
72 |
+
|
73 |
+
atexit.register(cleanup_mcp_client_instances_on_exit)
|
74 |
+
|
75 |
+
def encode_image(image_path):
|
76 |
+
if not image_path: return None
|
77 |
+
try:
|
78 |
+
image = Image.open(image_path) if not isinstance(image_path, Image.Image) else image_path
|
79 |
+
if image.mode == 'RGBA': image = image.convert('RGB')
|
80 |
+
buffered = io.BytesIO()
|
81 |
+
image.save(buffered, format="JPEG")
|
82 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error encoding image {image_path}: {e}")
|
85 |
+
return None
|
86 |
+
|
87 |
+
def respond(
|
88 |
+
message_input_text,
|
89 |
+
image_files_list,
|
90 |
+
history: list[tuple[str, str]], # history will be list of (user_str_display, assistant_str_display)
|
91 |
+
system_message,
|
92 |
+
max_tokens,
|
93 |
+
temperature,
|
94 |
+
top_p,
|
95 |
+
frequency_penalty,
|
96 |
+
seed,
|
97 |
+
provider,
|
98 |
+
custom_api_key,
|
99 |
+
custom_model,
|
100 |
+
model_search_term,
|
101 |
+
selected_model
|
102 |
+
):
|
103 |
+
global mcp_tools_collection
|
104 |
+
print(f"Respond: Text='{message_input_text}', Images={len(image_files_list) if image_files_list else 0}")
|
105 |
+
|
106 |
+
token_to_use = custom_api_key if custom_api_key.strip() else ACCESS_TOKEN
|
107 |
+
hf_inference_client = InferenceClient(token=token_to_use, provider=provider)
|
108 |
+
if seed == -1: seed = None
|
109 |
+
|
110 |
+
current_user_content_parts = []
|
111 |
+
if message_input_text and message_input_text.strip():
|
112 |
+
current_user_content_parts.append({"type": "text", "text": message_input_text.strip()})
|
113 |
+
if image_files_list:
|
114 |
+
for img_path in image_files_list:
|
115 |
+
encoded_img = encode_image(img_path)
|
116 |
+
if encoded_img:
|
117 |
+
current_user_content_parts.append({
|
118 |
+
"type": "image_url",
|
119 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
|
120 |
+
})
|
121 |
+
if not current_user_content_parts:
|
122 |
+
for item in history: yield item # Should not happen if handle_submit filters empty
|
123 |
+
return
|
124 |
+
|
125 |
+
llm_messages = [{"role": "system", "content": system_message}]
|
126 |
+
for hist_user_str, hist_assistant in history: # hist_user_str is display string
|
127 |
+
# For LLM context, we only care about the text part of history if it was multimodal.
|
128 |
+
# Current image handling is only for the *current* turn.
|
129 |
+
# If you need to re-process history for multimodal context for LLM, this part needs more logic.
|
130 |
+
# For now, assuming hist_user_str is sufficient as text context from past turns.
|
131 |
+
if hist_user_str:
|
132 |
+
llm_messages.append({"role": "user", "content": hist_user_str})
|
133 |
+
if hist_assistant:
|
134 |
+
llm_messages.append({"role": "assistant", "content": hist_assistant})
|
135 |
|
136 |
+
llm_messages.append({"role": "user", "content": current_user_content_parts if len(current_user_content_parts) > 1 else (current_user_content_parts[0] if current_user_content_parts else "")})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# FIX for Issue 1: 'NoneType' object has no attribute 'strip'
|
139 |
+
model_to_use = (custom_model.strip() if custom_model else "") or selected_model
|
140 |
+
print(f"Model selected for inference: {model_to_use}")
|
141 |
+
|
142 |
+
active_mcp_tools = list(mcp_tools_collection.tools) if mcp_tools_collection else []
|
143 |
+
|
144 |
+
if active_mcp_tools:
|
145 |
+
print(f"MCP tools are active ({len(active_mcp_tools)} tools). Using CodeAgent.")
|
146 |
+
class HFClientWrapperForAgent:
|
147 |
+
def __init__(self, hf_client, model_id, outer_scope_params):
|
148 |
+
self.client = hf_client
|
149 |
+
self.model_id = model_id
|
150 |
+
self.params = outer_scope_params
|
151 |
+
def generate(self, agent_llm_messages, tools=None, tool_choice=None, **kwargs):
|
152 |
+
api_params = {
|
153 |
+
"model": self.model_id, "messages": agent_llm_messages, "stream": False,
|
154 |
+
"max_tokens": self.params['max_tokens'], "temperature": self.params['temperature'],
|
155 |
+
"top_p": self.params['top_p'], "frequency_penalty": self.params['frequency_penalty'],
|
156 |
+
}
|
157 |
+
if self.params['seed'] is not None: api_params["seed"] = self.params['seed']
|
158 |
+
if tools: api_params["tools"] = tools
|
159 |
+
if tool_choice: api_params["tool_choice"] = tool_choice
|
160 |
+
|
161 |
+
print(f"Agent's HFClientWrapper calling LLM: {self.model_id} with params: {api_params}")
|
162 |
+
completion = self.client.chat_completion(**api_params)
|
163 |
+
|
164 |
+
# FIX for Issue 2 (Potential): Ensure content is not None for text responses
|
165 |
+
if completion.choices and completion.choices[0].message and \
|
166 |
+
completion.choices[0].message.content is None and \
|
167 |
+
(not completion.choices[0].message.tool_calls or not completion.choices[0].message.tool_calls):
|
168 |
+
print("Warning (HFClientWrapperForAgent): Model returned None content. Setting to empty string.")
|
169 |
+
completion.choices[0].message.content = ""
|
170 |
+
return completion
|
171 |
+
|
172 |
+
outer_scope_llm_params = {
|
173 |
+
"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p,
|
174 |
+
"frequency_penalty": frequency_penalty, "seed": seed
|
175 |
+
}
|
176 |
+
agent_model_adapter = HFClientWrapperForAgent(hf_inference_client, model_to_use, outer_scope_llm_params)
|
177 |
+
agent = CodeAgent(tools=active_mcp_tools, model=agent_model_adapter, messages_constructor=lambda: llm_messages[:-1].copy()) # Prime with history
|
178 |
+
|
179 |
+
current_query_for_agent = message_input_text.strip() if message_input_text else "User provided image(s)."
|
180 |
+
if not current_query_for_agent and image_files_list:
|
181 |
+
current_query_for_agent = "Process the provided image(s) or follow related instructions."
|
182 |
+
elif not current_query_for_agent and not image_files_list:
|
183 |
+
current_query_for_agent = "..." # Should be caught by earlier check
|
184 |
+
|
185 |
+
print(f"Query for CodeAgent.run: '{current_query_for_agent}' with {len(llm_messages)-1} history messages for priming.")
|
186 |
+
try:
|
187 |
+
agent_final_text_response = agent.run(current_query_for_agent)
|
188 |
+
yield agent_final_text_response
|
189 |
+
print("Completed response generation via CodeAgent.")
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error during CodeAgent execution: {e}") # This will now print the actual underlying error
|
192 |
+
yield f"Error using tools: {str(e)}" # The str(e) might be the user-facing error
|
193 |
+
return
|
194 |
+
else:
|
195 |
+
print("No MCP tools active. Proceeding with direct LLM call (streaming).")
|
196 |
+
response_stream_content = ""
|
197 |
try:
|
198 |
+
stream = hf_inference_client.chat_completion(
|
199 |
+
model=model_to_use, messages=llm_messages, stream=True,
|
200 |
+
max_tokens=max_tokens, temperature=temperature, top_p=top_p,
|
201 |
+
frequency_penalty=frequency_penalty, seed=seed
|
|
|
|
|
202 |
)
|
203 |
+
for chunk in stream:
|
204 |
+
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
205 |
+
delta = chunk.choices[0].delta
|
206 |
+
if hasattr(delta, 'content') and delta.content:
|
207 |
+
token_text = delta.content
|
208 |
+
response_stream_content += token_text
|
209 |
+
yield response_stream_content
|
210 |
+
print("\nCompleted streaming response generation.")
|
|
|
211 |
except Exception as e:
|
212 |
+
print(f"Error during direct LLM inference: {e}")
|
213 |
+
yield response_stream_content + f"\nError: {str(e)}"
|
214 |
+
|
215 |
+
def validate_provider(api_key, provider):
|
216 |
+
if not api_key.strip() and provider != "hf-inference":
|
217 |
+
return gr.update(value="hf-inference")
|
218 |
+
return gr.update(value=provider)
|
219 |
+
|
220 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
221 |
+
# UserWarning for type='tuples' is known. Consider changing to type='messages' later for robustness.
|
222 |
+
chatbot = gr.Chatbot(
|
223 |
+
label="Serverless TextGen Hub", height=600, show_copy_button=True,
|
224 |
+
placeholder="Select a model, (optionally) load MCP Tools, and begin chatting.",
|
225 |
+
layout="panel", bubble_full_width=False
|
226 |
+
)
|
227 |
+
msg_input_box = gr.MultimodalTextbox(
|
228 |
+
placeholder="Type a message or upload images...", show_label=False,
|
229 |
+
container=False, scale=12, file_types=["image"],
|
230 |
+
file_count="multiple", sources=["upload"]
|
231 |
+
)
|
232 |
+
with gr.Accordion("Settings", open=False):
|
233 |
+
system_message_box = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt")
|
234 |
+
with gr.Row():
|
235 |
+
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max tokens")
|
236 |
+
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
237 |
+
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
|
238 |
+
with gr.Row():
|
239 |
+
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
240 |
+
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
|
241 |
+
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
242 |
+
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
|
243 |
+
byok_textbox = gr.Textbox(label="BYOK (Hugging Face API Key)", type="password", placeholder="Enter token if not using 'hf-inference'")
|
244 |
+
custom_model_box = gr.Textbox(label="Custom Model ID", placeholder="org/model-name (overrides selection below)")
|
245 |
+
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...")
|
246 |
+
models_list = [
|
247 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
|
248 |
+
"meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct",
|
249 |
+
"meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
|
250 |
+
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B",
|
251 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "mistralai/Mistral-Nemo-Instruct-2407",
|
252 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
|
253 |
+
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B",
|
254 |
+
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct",
|
255 |
+
"Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct",
|
256 |
+
"microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
|
257 |
+
]
|
258 |
+
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
|
259 |
+
gr.Markdown("[All Text models](https://huggingface.co/models?pipeline_tag=text-generation) | [All Multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text)")
|
260 |
+
|
261 |
+
with gr.Accordion("MCP Client Settings (Connect to External Tools)", open=False):
|
262 |
+
gr.Markdown("Configure connections to MCP Servers to allow the LLM to use external tools. The LLM will decide when to use these tools based on your prompts.")
|
263 |
+
mcp_server_config_input = gr.Textbox(
|
264 |
+
label="MCP Server Configurations (JSON Array)",
|
265 |
+
info='Example: [{"name": "MyToolServer", "type": "sse", "url": "http://server_url/gradio_api/mcp/sse"}]',
|
266 |
+
lines=3, placeholder='Enter a JSON list of server configurations here.',
|
267 |
+
value=json.dumps(DEFAULT_MCP_SERVERS, indent=2)
|
268 |
+
)
|
269 |
+
mcp_load_status_display = gr.Textbox(label="MCP Load Status", interactive=False)
|
270 |
+
load_mcp_tools_btn = gr.Button("Load/Reload MCP Tools")
|
271 |
+
|
272 |
+
def handle_load_mcp_tools_click(config_str_from_ui):
|
273 |
+
if not config_str_from_ui:
|
274 |
+
load_mcp_tools([])
|
275 |
+
return "MCP tool loading attempted with empty config. Tools cleared."
|
276 |
try:
|
277 |
+
parsed_configs = json.loads(config_str_from_ui)
|
278 |
+
if not isinstance(parsed_configs, list): return "Error: MCP configuration must be a valid JSON list."
|
279 |
+
load_mcp_tools(parsed_configs)
|
280 |
+
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
|
281 |
+
loaded_tool_names = [t.name for t in mcp_tools_collection.tools]
|
282 |
+
return f"Successfully loaded {len(loaded_tool_names)} MCP tools: {', '.join(loaded_tool_names)}"
|
283 |
+
else: return "No MCP tools loaded, or an error occurred. Check console for details."
|
284 |
+
except json.JSONDecodeError: return "Error: Invalid JSON format in MCP server configurations."
|
285 |
except Exception as e:
|
286 |
+
print(f"Unhandled error in handle_load_mcp_tools_click: {e}")
|
287 |
+
return f"Error loading MCP tools: {str(e)}. Check console."
|
288 |
+
load_mcp_tools_btn.click(handle_load_mcp_tools_click, inputs=[mcp_server_config_input], outputs=mcp_load_status_display)
|
289 |
|
290 |
+
def filter_models(search_term):
|
291 |
+
return gr.update(choices=[m for m in models_list if search_term.lower() in m.lower()])
|
292 |
+
def set_custom_model_from_radio(selected):
|
293 |
+
return selected
|
294 |
|
295 |
+
def handle_submit(msg_content_dict, current_chat_history):
|
296 |
+
text = msg_content_dict.get("text", "").strip()
|
297 |
+
files = msg_content_dict.get("files", []) # list of file paths
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
+
if not text and not files: # Skip if both are empty
|
300 |
+
print("Skipping empty submission from multimodal textbox.")
|
301 |
+
# Yield current history to prevent Gradio from complaining about no output
|
302 |
+
yield current_chat_history, {"text": "", "files": []} # Clear input
|
303 |
+
return
|
304 |
|
305 |
+
# FIX for Issue 4: Pydantic FileMessage error by ensuring user part of history is a string
|
306 |
+
user_display_parts = []
|
307 |
+
if text:
|
308 |
+
user_display_parts.append(text)
|
309 |
+
if files:
|
310 |
+
for f_path in files:
|
311 |
+
base_name = os.path.basename(f_path) if f_path else "file"
|
312 |
+
f_path_str = f_path if f_path else ""
|
313 |
+
user_display_parts.append(f"\n")
|
314 |
+
user_display_message_for_chatbot = " ".join(user_display_parts).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
+
current_chat_history.append([user_display_message_for_chatbot, None])
|
|
|
317 |
|
318 |
+
# Prepare history for respond function (ensure user part is string)
|
319 |
+
history_for_respond = []
|
320 |
+
for user_h, assistant_h in current_chat_history[:-1]: # History before current turn
|
321 |
+
history_for_respond.append((str(user_h) if user_h is not None else "", assistant_h))
|
322 |
+
|
323 |
+
|
324 |
+
assistant_response_accumulator = ""
|
325 |
+
for streamed_chunk in respond(
|
326 |
+
text, files,
|
327 |
+
history_for_respond,
|
328 |
+
system_message_box.value, max_tokens_slider.value, temperature_slider.value,
|
329 |
+
top_p_slider.value, frequency_penalty_slider.value, seed_slider.value,
|
330 |
+
provider_radio.value, byok_textbox.value, custom_model_box.value,
|
331 |
+
model_search_box.value, featured_model_radio.value
|
332 |
+
):
|
333 |
+
assistant_response_accumulator = streamed_chunk
|
334 |
+
current_chat_history[-1][1] = assistant_response_accumulator
|
335 |
+
yield current_chat_history, {"text": "", "files": []}
|
336 |
|
337 |
+
msg_input_box.submit(
|
338 |
+
handle_submit,
|
339 |
+
[msg_input_box, chatbot],
|
340 |
+
[chatbot, msg_input_box]
|
341 |
+
)
|
342 |
+
model_search_box.change(filter_models, model_search_box, featured_model_radio)
|
343 |
+
featured_model_radio.change(set_custom_model_from_radio, featured_model_radio, custom_model_box)
|
344 |
+
byok_textbox.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
|
345 |
+
provider_radio.change(validate_provider, [byok_textbox, provider_radio], provider_radio)
|
346 |
+
|
347 |
+
load_mcp_tools(DEFAULT_MCP_SERVERS) # Load defaults on startup
|
348 |
+
print(f"Initial MCP tools loaded: {len(mcp_tools_collection.tools) if mcp_tools_collection else 0} tools.")
|
349 |
+
print("Gradio interface initialized.")
|
350 |
+
|
351 |
+
if __name__ == "__main__":
|
352 |
+
print("Launching the Serverless TextGen Hub demo application.")
|
353 |
+
demo.launch(show_api=False)
|