Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,6 @@ import json
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
-
import requests
|
9 |
-
from smolagents.mcp_client import MCPClient
|
10 |
|
11 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
12 |
print("Access token loaded.")
|
@@ -41,154 +39,9 @@ def encode_image(image_path):
|
|
41 |
print(f"Error encoding image: {e}")
|
42 |
return None
|
43 |
|
44 |
-
# Dictionary to store active MCP connections
|
45 |
-
mcp_connections = {}
|
46 |
-
|
47 |
-
def connect_to_mcp_server(server_url, server_name=None):
|
48 |
-
"""Connect to an MCP server and return available tools"""
|
49 |
-
if not server_url:
|
50 |
-
return None, "No server URL provided"
|
51 |
-
|
52 |
-
try:
|
53 |
-
# Create an MCP client and connect to the server
|
54 |
-
client = MCPClient({"url": server_url})
|
55 |
-
# Get available tools
|
56 |
-
tools = client.get_tools()
|
57 |
-
|
58 |
-
# Store the connection for later use
|
59 |
-
name = server_name or f"Server_{len(mcp_connections)}"
|
60 |
-
mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
|
61 |
-
|
62 |
-
return name, f"Successfully connected to {name} with {len(tools)} available tools"
|
63 |
-
except Exception as e:
|
64 |
-
print(f"Error connecting to MCP server: {e}")
|
65 |
-
return None, f"Error connecting to MCP server: {str(e)}"
|
66 |
-
|
67 |
-
def list_mcp_tools(server_name):
|
68 |
-
"""List available tools for a connected MCP server"""
|
69 |
-
if server_name not in mcp_connections:
|
70 |
-
return "Server not connected"
|
71 |
-
|
72 |
-
tools = mcp_connections[server_name]["tools"]
|
73 |
-
tool_info = []
|
74 |
-
for tool in tools:
|
75 |
-
tool_info.append(f"- {tool.name}: {tool.description}")
|
76 |
-
|
77 |
-
if not tool_info:
|
78 |
-
return "No tools available for this server"
|
79 |
-
|
80 |
-
return "\n".join(tool_info)
|
81 |
-
|
82 |
-
def call_mcp_tool(server_name, tool_name, **kwargs):
|
83 |
-
"""Call a specific tool from an MCP server"""
|
84 |
-
if server_name not in mcp_connections:
|
85 |
-
return f"Server '{server_name}' not connected"
|
86 |
-
|
87 |
-
client = mcp_connections[server_name]["client"]
|
88 |
-
tools = mcp_connections[server_name]["tools"]
|
89 |
-
|
90 |
-
# Find the requested tool
|
91 |
-
tool = next((t for t in tools if t.name == tool_name), None)
|
92 |
-
if not tool:
|
93 |
-
return f"Tool '{tool_name}' not found on server '{server_name}'"
|
94 |
-
|
95 |
-
try:
|
96 |
-
# Call the tool with provided arguments
|
97 |
-
result = client.call_tool(tool_name, kwargs)
|
98 |
-
return result
|
99 |
-
except Exception as e:
|
100 |
-
print(f"Error calling MCP tool: {e}")
|
101 |
-
return f"Error calling MCP tool: {str(e)}"
|
102 |
-
|
103 |
-
def analyze_message_for_tool_call(message, active_mcp_servers, client, model_to_use, system_message):
|
104 |
-
"""Analyze a message to determine if an MCP tool should be called"""
|
105 |
-
# Skip analysis if message is empty
|
106 |
-
if not message or not message.strip():
|
107 |
-
return None, None
|
108 |
-
|
109 |
-
# Get information about available tools
|
110 |
-
tool_info = []
|
111 |
-
for server_name in active_mcp_servers:
|
112 |
-
if server_name in mcp_connections:
|
113 |
-
server_tools = mcp_connections[server_name]["tools"]
|
114 |
-
for tool in server_tools:
|
115 |
-
tool_info.append({
|
116 |
-
"server_name": server_name,
|
117 |
-
"tool_name": tool.name,
|
118 |
-
"description": tool.description
|
119 |
-
})
|
120 |
-
|
121 |
-
if not tool_info:
|
122 |
-
return None, None
|
123 |
-
|
124 |
-
# Create a structured query for the LLM to analyze if a tool call is needed
|
125 |
-
tools_desc = []
|
126 |
-
for info in tool_info:
|
127 |
-
tools_desc.append(f"{info['server_name']}.{info['tool_name']}: {info['description']}")
|
128 |
-
|
129 |
-
tools_string = "\n".join(tools_desc)
|
130 |
-
|
131 |
-
analysis_system_prompt = f"""You are an assistant that helps determine if a user message requires using an external tool.
|
132 |
-
Available tools:
|
133 |
-
{tools_string}
|
134 |
-
|
135 |
-
Your job is to:
|
136 |
-
1. Analyze the user's message
|
137 |
-
2. Determine if they're asking to use one of the tools
|
138 |
-
3. If yes, respond with a JSON object with the server_name, tool_name, and parameters
|
139 |
-
4. If no, respond with "NO_TOOL_NEEDED"
|
140 |
-
|
141 |
-
Example 1:
|
142 |
-
User: "Please turn this text into speech: Hello world"
|
143 |
-
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio", "parameters": {{"text": "Hello world", "speed": 1.0}}}}
|
144 |
-
|
145 |
-
Example 2:
|
146 |
-
User: "What is the capital of France?"
|
147 |
-
Response: NO_TOOL_NEEDED"""
|
148 |
-
|
149 |
-
try:
|
150 |
-
# Call the LLM to analyze the message
|
151 |
-
response = client.chat_completion(
|
152 |
-
model=model_to_use,
|
153 |
-
messages=[
|
154 |
-
{"role": "system", "content": analysis_system_prompt},
|
155 |
-
{"role": "user", "content": message}
|
156 |
-
],
|
157 |
-
temperature=0.2, # Low temperature for more deterministic responses
|
158 |
-
max_tokens=300
|
159 |
-
)
|
160 |
-
|
161 |
-
analysis = response.choices[0].message.content
|
162 |
-
print(f"Tool analysis: {analysis}")
|
163 |
-
|
164 |
-
if "NO_TOOL_NEEDED" in analysis:
|
165 |
-
return None, None
|
166 |
-
|
167 |
-
# Try to extract JSON from the response
|
168 |
-
json_start = analysis.find("{")
|
169 |
-
json_end = analysis.rfind("}") + 1
|
170 |
-
|
171 |
-
if json_start < 0 or json_end <= 0:
|
172 |
-
return None, None
|
173 |
-
|
174 |
-
json_str = analysis[json_start:json_end]
|
175 |
-
try:
|
176 |
-
tool_call = json.loads(json_str)
|
177 |
-
return tool_call.get("server_name"), {
|
178 |
-
"tool_name": tool_call.get("tool_name"),
|
179 |
-
"parameters": tool_call.get("parameters", {})
|
180 |
-
}
|
181 |
-
except json.JSONDecodeError:
|
182 |
-
print(f"Failed to parse tool call JSON: {json_str}")
|
183 |
-
return None, None
|
184 |
-
|
185 |
-
except Exception as e:
|
186 |
-
print(f"Error analyzing message for tool calls: {str(e)}")
|
187 |
-
return None, None
|
188 |
-
|
189 |
def respond(
|
190 |
message,
|
191 |
-
image_files,
|
192 |
history: list[tuple[str, str]],
|
193 |
system_message,
|
194 |
max_tokens,
|
@@ -200,10 +53,7 @@ def respond(
|
|
200 |
custom_api_key,
|
201 |
custom_model,
|
202 |
model_search_term,
|
203 |
-
selected_model
|
204 |
-
mcp_enabled=False,
|
205 |
-
active_mcp_servers=None,
|
206 |
-
mcp_interaction_mode="Natural Language"
|
207 |
):
|
208 |
print(f"Received message: {message}")
|
209 |
print(f"Received {len(image_files) if image_files else 0} images")
|
@@ -216,9 +66,6 @@ def respond(
|
|
216 |
print(f"Selected model (custom_model): {custom_model}")
|
217 |
print(f"Model search term: {model_search_term}")
|
218 |
print(f"Selected model from radio: {selected_model}")
|
219 |
-
print(f"MCP enabled: {mcp_enabled}")
|
220 |
-
print(f"Active MCP servers: {active_mcp_servers}")
|
221 |
-
print(f"MCP interaction mode: {mcp_interaction_mode}")
|
222 |
|
223 |
# Determine which token to use
|
224 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
@@ -235,58 +82,6 @@ def respond(
|
|
235 |
# Convert seed to None if -1 (meaning random)
|
236 |
if seed == -1:
|
237 |
seed = None
|
238 |
-
|
239 |
-
# Determine which model to use
|
240 |
-
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
241 |
-
print(f"Model selected for inference: {model_to_use}")
|
242 |
-
|
243 |
-
# Process MCP commands in command mode
|
244 |
-
if mcp_enabled and message:
|
245 |
-
if message.startswith("/mcp"): # Always handle explicit commands
|
246 |
-
# Handle MCP command
|
247 |
-
command_parts = message.split(" ", 3)
|
248 |
-
if len(command_parts) < 3:
|
249 |
-
return "Invalid MCP command. Format: /mcp <server_name> <tool_name> [arguments]"
|
250 |
-
|
251 |
-
_, server_name, tool_name = command_parts[:3]
|
252 |
-
args_json = "{}" if len(command_parts) < 4 else command_parts[3]
|
253 |
-
|
254 |
-
try:
|
255 |
-
args_dict = json.loads(args_json)
|
256 |
-
result = call_mcp_tool(server_name, tool_name, **args_dict)
|
257 |
-
if isinstance(result, dict):
|
258 |
-
return json.dumps(result, indent=2)
|
259 |
-
return str(result)
|
260 |
-
except json.JSONDecodeError:
|
261 |
-
return f"Invalid JSON arguments: {args_json}"
|
262 |
-
except Exception as e:
|
263 |
-
return f"Error executing MCP command: {str(e)}"
|
264 |
-
elif mcp_interaction_mode == "Natural Language" and active_mcp_servers:
|
265 |
-
# Use natural language processing to detect tool calls
|
266 |
-
server_name, tool_info = analyze_message_for_tool_call(
|
267 |
-
message,
|
268 |
-
active_mcp_servers,
|
269 |
-
client,
|
270 |
-
model_to_use,
|
271 |
-
system_message
|
272 |
-
)
|
273 |
-
|
274 |
-
if server_name and tool_info:
|
275 |
-
try:
|
276 |
-
# Call the detected tool
|
277 |
-
print(f"Calling tool via natural language: {server_name}.{tool_info['tool_name']} with parameters: {tool_info['parameters']}")
|
278 |
-
result = call_mcp_tool(server_name, tool_info['tool_name'], **tool_info['parameters'])
|
279 |
-
|
280 |
-
# Format the response to include what was done
|
281 |
-
if isinstance(result, dict):
|
282 |
-
result_str = json.dumps(result, indent=2)
|
283 |
-
else:
|
284 |
-
result_str = str(result)
|
285 |
-
|
286 |
-
return f"I used the {tool_info['tool_name']} tool from {server_name} with your request.\n\nResult:\n{result_str}"
|
287 |
-
except Exception as e:
|
288 |
-
print(f"Error executing MCP tool via natural language: {str(e)}")
|
289 |
-
# Continue with normal response if tool call fails
|
290 |
|
291 |
# Create multimodal content if images are present
|
292 |
if image_files and len(image_files) > 0:
|
@@ -319,25 +114,8 @@ def respond(
|
|
319 |
# Text-only message
|
320 |
user_content = message
|
321 |
|
322 |
-
# Add information about available MCP tools to the system message if MCP is enabled
|
323 |
-
augmented_system_message = system_message
|
324 |
-
if mcp_enabled and active_mcp_servers:
|
325 |
-
tool_info = []
|
326 |
-
for server_name in active_mcp_servers:
|
327 |
-
if server_name in mcp_connections:
|
328 |
-
server_tools = list_mcp_tools(server_name).split("\n")
|
329 |
-
tool_info.extend([f"{server_name}: {tool}" for tool in server_tools])
|
330 |
-
|
331 |
-
if tool_info:
|
332 |
-
mcp_tools_description = "\n".join(tool_info)
|
333 |
-
|
334 |
-
if mcp_interaction_mode == "Command Mode":
|
335 |
-
augmented_system_message += f"\n\nYou have access to the following MCP tools:\n{mcp_tools_description}\n\nTo use these tools, the user can type a command in the format: /mcp <server_name> <tool_name> <arguments_json>"
|
336 |
-
else:
|
337 |
-
augmented_system_message += f"\n\nYou have access to the following MCP tools:\n{mcp_tools_description}\n\nThe user can use these tools by describing what they want in natural language, and the system will automatically detect when to use a tool based on their request."
|
338 |
-
|
339 |
# Prepare messages in the format expected by the API
|
340 |
-
messages = [{"role": "system", "content":
|
341 |
print("Initial messages array constructed.")
|
342 |
|
343 |
# Add conversation history to the context
|
@@ -433,13 +211,19 @@ def respond(
|
|
433 |
|
434 |
print("Completed response generation.")
|
435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
# GRADIO UI
|
437 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
438 |
# Create the chatbot component
|
439 |
chatbot = gr.Chatbot(
|
440 |
height=600,
|
441 |
show_copy_button=True,
|
442 |
-
placeholder="Select a model and begin chatting. Now supports multiple inference providers
|
443 |
layout="panel"
|
444 |
)
|
445 |
print("Chatbot interface created.")
|
@@ -455,6 +239,8 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
455 |
sources=["upload"]
|
456 |
)
|
457 |
|
|
|
|
|
458 |
# Create accordion for settings
|
459 |
with gr.Accordion("Settings", open=False):
|
460 |
# System message
|
@@ -588,69 +374,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
588 |
|
589 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
590 |
|
591 |
-
# Create accordion for MCP settings
|
592 |
-
with gr.Accordion("MCP Settings", open=False):
|
593 |
-
mcp_enabled_checkbox = gr.Checkbox(
|
594 |
-
label="Enable MCP Support",
|
595 |
-
value=False,
|
596 |
-
info="Enable Model Context Protocol support to connect to external tools and services"
|
597 |
-
)
|
598 |
-
|
599 |
-
with gr.Row():
|
600 |
-
mcp_server_url = gr.Textbox(
|
601 |
-
label="MCP Server URL",
|
602 |
-
placeholder="https://example-mcp-server.hf.space/gradio_api/mcp/sse",
|
603 |
-
info="URL of the MCP server to connect to"
|
604 |
-
)
|
605 |
-
|
606 |
-
mcp_server_name = gr.Textbox(
|
607 |
-
label="Server Name",
|
608 |
-
placeholder="Optional name for this server",
|
609 |
-
info="A friendly name to identify this server"
|
610 |
-
)
|
611 |
-
|
612 |
-
mcp_connect_button = gr.Button("Connect to MCP Server")
|
613 |
-
|
614 |
-
mcp_status = gr.Textbox(
|
615 |
-
label="MCP Connection Status",
|
616 |
-
placeholder="No MCP servers connected",
|
617 |
-
interactive=False
|
618 |
-
)
|
619 |
-
|
620 |
-
active_mcp_servers = gr.Dropdown(
|
621 |
-
label="Active MCP Servers",
|
622 |
-
choices=[],
|
623 |
-
multiselect=True,
|
624 |
-
info="Select which MCP servers to use in chat"
|
625 |
-
)
|
626 |
-
|
627 |
-
mcp_mode = gr.Radio(
|
628 |
-
label="MCP Interaction Mode",
|
629 |
-
choices=["Natural Language", "Command Mode"],
|
630 |
-
value="Natural Language",
|
631 |
-
info="Choose how to interact with MCP tools"
|
632 |
-
)
|
633 |
-
|
634 |
-
gr.Markdown("""
|
635 |
-
### MCP Interaction Modes
|
636 |
-
|
637 |
-
**Natural Language Mode**: Simply describe what you want in plain English. Examples:
|
638 |
-
```
|
639 |
-
Please convert the text "Hello world" to speech
|
640 |
-
Can you read this text aloud: "Welcome to MCP integration"
|
641 |
-
```
|
642 |
-
|
643 |
-
**Command Mode**: Use structured commands (for advanced users)
|
644 |
-
```
|
645 |
-
/mcp <server_name> <tool_name> {"param1": "value1", "param2": "value2"}
|
646 |
-
```
|
647 |
-
|
648 |
-
Example:
|
649 |
-
```
|
650 |
-
/mcp kokoroTTS text_to_audio {"text": "Hello world", "speed": 1.0}
|
651 |
-
```
|
652 |
-
""")
|
653 |
-
|
654 |
# Chat history state
|
655 |
chat_history = gr.State([])
|
656 |
|
@@ -666,16 +389,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
666 |
print(f"Featured model selected: {selected}")
|
667 |
return selected
|
668 |
|
669 |
-
# Function to connect to MCP server
|
670 |
-
def connect_mcp_server(url, name):
|
671 |
-
server_name, status = connect_to_mcp_server(url, name)
|
672 |
-
|
673 |
-
# Update the active servers dropdown
|
674 |
-
servers = list(mcp_connections.keys())
|
675 |
-
|
676 |
-
# Return the status message and updated server list
|
677 |
-
return status, gr.update(choices=servers)
|
678 |
-
|
679 |
# Function for the chat interface
|
680 |
def user(user_message, history):
|
681 |
# Debug logging for troubleshooting
|
@@ -721,7 +434,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
721 |
return history
|
722 |
|
723 |
# Define bot response function
|
724 |
-
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model
|
725 |
# Check if history is valid
|
726 |
if not history or len(history) == 0:
|
727 |
print("No history to process")
|
@@ -772,10 +485,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
772 |
api_key,
|
773 |
custom_model,
|
774 |
search_term,
|
775 |
-
selected_model
|
776 |
-
mcp_enabled,
|
777 |
-
selected_servers,
|
778 |
-
mcp_interaction_mode
|
779 |
):
|
780 |
history[-1][1] = response
|
781 |
yield history
|
@@ -795,21 +505,12 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
795 |
api_key,
|
796 |
custom_model,
|
797 |
search_term,
|
798 |
-
selected_model
|
799 |
-
mcp_enabled,
|
800 |
-
selected_servers,
|
801 |
-
mcp_interaction_mode
|
802 |
):
|
803 |
history[-1][1] = response
|
804 |
yield history
|
805 |
|
806 |
-
#
|
807 |
-
def validate_provider(api_key, provider):
|
808 |
-
if not api_key.strip() and provider != "hf-inference":
|
809 |
-
return gr.update(value="hf-inference")
|
810 |
-
return gr.update(value=provider)
|
811 |
-
|
812 |
-
# Event handlers
|
813 |
msg.submit(
|
814 |
user,
|
815 |
[msg, chatbot],
|
@@ -819,7 +520,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
819 |
bot,
|
820 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
821 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
822 |
-
model_search_box, featured_model_radio
|
823 |
[chatbot]
|
824 |
).then(
|
825 |
lambda: {"text": "", "files": []}, # Clear inputs after submission
|
@@ -827,13 +528,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
827 |
[msg]
|
828 |
)
|
829 |
|
830 |
-
# Connect MCP connect button
|
831 |
-
mcp_connect_button.click(
|
832 |
-
connect_mcp_server,
|
833 |
-
[mcp_server_url, mcp_server_name],
|
834 |
-
[mcp_status, active_mcp_servers]
|
835 |
-
)
|
836 |
-
|
837 |
# Connect the model filter to update the radio choices
|
838 |
model_search_box.change(
|
839 |
fn=filter_models,
|
@@ -870,4 +564,4 @@ print("Gradio interface initialized.")
|
|
870 |
|
871 |
if __name__ == "__main__":
|
872 |
print("Launching the demo application.")
|
873 |
-
demo.launch(show_api=True
|
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
|
|
|
|
8 |
|
9 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
10 |
print("Access token loaded.")
|
|
|
39 |
print(f"Error encoding image: {e}")
|
40 |
return None
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def respond(
|
43 |
message,
|
44 |
+
image_files, # Changed parameter name and structure
|
45 |
history: list[tuple[str, str]],
|
46 |
system_message,
|
47 |
max_tokens,
|
|
|
53 |
custom_api_key,
|
54 |
custom_model,
|
55 |
model_search_term,
|
56 |
+
selected_model
|
|
|
|
|
|
|
57 |
):
|
58 |
print(f"Received message: {message}")
|
59 |
print(f"Received {len(image_files) if image_files else 0} images")
|
|
|
66 |
print(f"Selected model (custom_model): {custom_model}")
|
67 |
print(f"Model search term: {model_search_term}")
|
68 |
print(f"Selected model from radio: {selected_model}")
|
|
|
|
|
|
|
69 |
|
70 |
# Determine which token to use
|
71 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
|
|
82 |
# Convert seed to None if -1 (meaning random)
|
83 |
if seed == -1:
|
84 |
seed = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Create multimodal content if images are present
|
87 |
if image_files and len(image_files) > 0:
|
|
|
114 |
# Text-only message
|
115 |
user_content = message
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
# Prepare messages in the format expected by the API
|
118 |
+
messages = [{"role": "system", "content": system_message}]
|
119 |
print("Initial messages array constructed.")
|
120 |
|
121 |
# Add conversation history to the context
|
|
|
211 |
|
212 |
print("Completed response generation.")
|
213 |
|
214 |
+
# Function to validate provider selection based on BYOK
|
215 |
+
def validate_provider(api_key, provider):
|
216 |
+
if not api_key.strip() and provider != "hf-inference":
|
217 |
+
return gr.update(value="hf-inference")
|
218 |
+
return gr.update(value=provider)
|
219 |
+
|
220 |
# GRADIO UI
|
221 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
222 |
# Create the chatbot component
|
223 |
chatbot = gr.Chatbot(
|
224 |
height=600,
|
225 |
show_copy_button=True,
|
226 |
+
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
|
227 |
layout="panel"
|
228 |
)
|
229 |
print("Chatbot interface created.")
|
|
|
239 |
sources=["upload"]
|
240 |
)
|
241 |
|
242 |
+
# Note: We're removing the separate submit button since MultimodalTextbox has its own
|
243 |
+
|
244 |
# Create accordion for settings
|
245 |
with gr.Accordion("Settings", open=False):
|
246 |
# System message
|
|
|
374 |
|
375 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
376 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
# Chat history state
|
378 |
chat_history = gr.State([])
|
379 |
|
|
|
389 |
print(f"Featured model selected: {selected}")
|
390 |
return selected
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
# Function for the chat interface
|
393 |
def user(user_message, history):
|
394 |
# Debug logging for troubleshooting
|
|
|
434 |
return history
|
435 |
|
436 |
# Define bot response function
|
437 |
+
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
438 |
# Check if history is valid
|
439 |
if not history or len(history) == 0:
|
440 |
print("No history to process")
|
|
|
485 |
api_key,
|
486 |
custom_model,
|
487 |
search_term,
|
488 |
+
selected_model
|
|
|
|
|
|
|
489 |
):
|
490 |
history[-1][1] = response
|
491 |
yield history
|
|
|
505 |
api_key,
|
506 |
custom_model,
|
507 |
search_term,
|
508 |
+
selected_model
|
|
|
|
|
|
|
509 |
):
|
510 |
history[-1][1] = response
|
511 |
yield history
|
512 |
|
513 |
+
# Event handlers - only using the MultimodalTextbox's built-in submit functionality
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
msg.submit(
|
515 |
user,
|
516 |
[msg, chatbot],
|
|
|
520 |
bot,
|
521 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
522 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
523 |
+
model_search_box, featured_model_radio],
|
524 |
[chatbot]
|
525 |
).then(
|
526 |
lambda: {"text": "", "files": []}, # Clear inputs after submission
|
|
|
528 |
[msg]
|
529 |
)
|
530 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
# Connect the model filter to update the radio choices
|
532 |
model_search_box.change(
|
533 |
fn=filter_models,
|
|
|
564 |
|
565 |
if __name__ == "__main__":
|
566 |
print("Launching the demo application.")
|
567 |
+
demo.launch(show_api=True)
|