Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,91 +5,15 @@ import json
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
from
|
12 |
-
from smolagents.mcp_client import MCPClient as SmolMCPClient # For connecting to MCP SSE servers
|
13 |
|
14 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
15 |
print("Access token loaded.")
|
16 |
|
17 |
-
#
|
18 |
-
mcp_tools_collection = ToolCollection(tools=[]) # Global store for loaded MCP tools
|
19 |
-
mcp_client_instances = [] # To keep track of client instances for proper closing
|
20 |
-
|
21 |
-
DEFAULT_MCP_SERVERS = [
|
22 |
-
{"name": "KokoroTTS (Example)", "type": "sse", "url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"}
|
23 |
-
]
|
24 |
-
|
25 |
-
def load_mcp_tools(server_configs_list):
|
26 |
-
global mcp_tools_collection, mcp_client_instances
|
27 |
-
|
28 |
-
# Close any existing client instances before loading new ones
|
29 |
-
for client_instance in mcp_client_instances:
|
30 |
-
try:
|
31 |
-
client_instance.close()
|
32 |
-
print(f"Closed existing MCP client: {client_instance}")
|
33 |
-
except Exception as e:
|
34 |
-
print(f"Error closing existing MCP client {client_instance}: {e}")
|
35 |
-
mcp_client_instances = []
|
36 |
-
|
37 |
-
all_discovered_tools = []
|
38 |
-
if not server_configs_list:
|
39 |
-
print("No MCP server configurations provided. Clearing MCP tools.")
|
40 |
-
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
|
41 |
-
return
|
42 |
-
|
43 |
-
print(f"Loading MCP tools from {len(server_configs_list)} server configurations...")
|
44 |
-
for config in server_configs_list:
|
45 |
-
server_name = config.get('name', config.get('url', 'Unknown Server'))
|
46 |
-
try:
|
47 |
-
if config.get("type") == "sse":
|
48 |
-
sse_url = config["url"]
|
49 |
-
print(f"Attempting to connect to MCP SSE server: {server_name} at {sse_url}")
|
50 |
-
|
51 |
-
# Using SmolMCPClient for SSE servers as shown in documentation
|
52 |
-
# The constructor expects server_parameters={"url": sse_url}
|
53 |
-
smol_mcp_client = SmolMCPClient(server_parameters={"url": sse_url})
|
54 |
-
mcp_client_instances.append(smol_mcp_client) # Keep track to close later
|
55 |
-
|
56 |
-
discovered_tools_from_server = smol_mcp_client.get_tools() # Returns a list of Tool objects
|
57 |
-
|
58 |
-
if discovered_tools_from_server:
|
59 |
-
all_discovered_tools.extend(list(discovered_tools_from_server))
|
60 |
-
print(f"Discovered {len(discovered_tools_from_server)} tools from {server_name}.")
|
61 |
-
else:
|
62 |
-
print(f"No tools discovered from {server_name}.")
|
63 |
-
# Add elif for "stdio" type if needed in the future, though it's more complex for Gradio apps
|
64 |
-
else:
|
65 |
-
print(f"Unsupported MCP server type '{config.get('type')}' for {server_name}. Skipping.")
|
66 |
-
except Exception as e:
|
67 |
-
print(f"Error loading MCP tools from {server_name}: {e}")
|
68 |
-
|
69 |
-
mcp_tools_collection = ToolCollection(tools=all_discovered_tools)
|
70 |
-
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
|
71 |
-
print(f"Successfully loaded a total of {len(mcp_tools_collection.tools)} MCP tools:")
|
72 |
-
for tool in mcp_tools_collection.tools:
|
73 |
-
print(f" - {tool.name}: {tool.description[:100]}...") # Print short description
|
74 |
-
else:
|
75 |
-
print("No MCP tools were loaded, or an error occurred.")
|
76 |
-
|
77 |
-
def cleanup_mcp_client_instances_on_exit():
|
78 |
-
global mcp_client_instances
|
79 |
-
print("Attempting to clean up MCP client instances on application exit...")
|
80 |
-
for client_instance in mcp_client_instances:
|
81 |
-
try:
|
82 |
-
client_instance.close()
|
83 |
-
print(f"Closed MCP client: {client_instance}")
|
84 |
-
except Exception as e:
|
85 |
-
print(f"Error closing MCP client {client_instance} on exit: {e}")
|
86 |
-
mcp_client_instances = []
|
87 |
-
print("MCP client cleanup finished.")
|
88 |
-
|
89 |
-
atexit.register(cleanup_mcp_client_instances_on_exit)
|
90 |
-
# --- End MCP Client Integration ---
|
91 |
-
|
92 |
-
# Function to encode image to base64 (remains the same)
|
93 |
def encode_image(image_path):
|
94 |
if not image_path:
|
95 |
print("No image path provided")
|
@@ -97,14 +21,19 @@ def encode_image(image_path):
|
|
97 |
|
98 |
try:
|
99 |
print(f"Encoding image from path: {image_path}")
|
|
|
|
|
100 |
if isinstance(image_path, Image.Image):
|
101 |
image = image_path
|
102 |
else:
|
|
|
103 |
image = Image.open(image_path)
|
104 |
|
|
|
105 |
if image.mode == 'RGBA':
|
106 |
image = image.convert('RGB')
|
107 |
|
|
|
108 |
buffered = io.BytesIO()
|
109 |
image.save(buffered, format="JPEG")
|
110 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
@@ -114,10 +43,111 @@ def encode_image(image_path):
|
|
114 |
print(f"Error encoding image: {e}")
|
115 |
return None
|
116 |
|
117 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
def respond(
|
119 |
-
|
120 |
-
|
121 |
history: list[tuple[str, str]],
|
122 |
system_message,
|
123 |
max_tokens,
|
@@ -128,314 +158,606 @@ def respond(
|
|
128 |
provider,
|
129 |
custom_api_key,
|
130 |
custom_model,
|
131 |
-
model_search_term,
|
132 |
-
selected_model
|
|
|
|
|
|
|
133 |
):
|
134 |
-
|
135 |
-
|
136 |
-
print(f"
|
137 |
-
print(f"
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
143 |
|
144 |
-
|
|
|
|
|
145 |
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
})
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
#
|
167 |
-
|
168 |
-
|
169 |
-
# Assuming history user part is already formatted (string or list of dicts)
|
170 |
-
if hist_user:
|
171 |
-
# Handle complex history items (tuples of text, list_of_image_paths)
|
172 |
-
if isinstance(hist_user, tuple) and len(hist_user) == 2:
|
173 |
-
hist_user_text, hist_user_images = hist_user
|
174 |
-
hist_user_parts = []
|
175 |
-
if hist_user_text: hist_user_parts.append({"type": "text", "text": hist_user_text})
|
176 |
-
for img_p in hist_user_images:
|
177 |
-
enc_img = encode_image(img_p)
|
178 |
-
if enc_img: hist_user_parts.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{enc_img}"}})
|
179 |
-
if hist_user_parts: llm_messages.append({"role": "user", "content": hist_user_parts})
|
180 |
-
elif isinstance(hist_user, str): # Simple text history
|
181 |
-
llm_messages.append({"role": "user", "content": hist_user})
|
182 |
-
# else: could be already formatted list of dicts from previous multimodal turn
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
llm_messages.append({"role": "user", "content": current_user_content_parts if len(current_user_content_parts) > 1 else current_user_content_parts[0] if current_user_content_parts else ""})
|
188 |
-
|
189 |
-
model_to_use = custom_model.strip() if custom_model.strip() else selected_model
|
190 |
print(f"Model selected for inference: {model_to_use}")
|
191 |
-
|
192 |
-
# --- Agent Logic or Direct LLM Call ---
|
193 |
-
active_mcp_tools = list(mcp_tools_collection.tools) if mcp_tools_collection else []
|
194 |
-
|
195 |
-
if active_mcp_tools:
|
196 |
-
print(f"MCP tools are active ({len(active_mcp_tools)} tools). Using CodeAgent.")
|
197 |
-
|
198 |
-
# Wrapper for smolagents.CodeAgent to use our configured HF InferenceClient
|
199 |
-
class HFClientWrapperForAgent:
|
200 |
-
def __init__(self, hf_client, model_id, outer_scope_params):
|
201 |
-
self.client = hf_client
|
202 |
-
self.model_id = model_id
|
203 |
-
self.params = outer_scope_params
|
204 |
-
|
205 |
-
def generate(self, agent_llm_messages, tools=None, tool_choice=None, **kwargs):
|
206 |
-
# agent_llm_messages is from the agent. tools/tool_choice also from agent.
|
207 |
-
api_params = {
|
208 |
-
"model": self.model_id,
|
209 |
-
"messages": agent_llm_messages,
|
210 |
-
"stream": False, # CodeAgent's .run() expects a full response object
|
211 |
-
"max_tokens": self.params['max_tokens'],
|
212 |
-
"temperature": self.params['temperature'],
|
213 |
-
"top_p": self.params['top_p'],
|
214 |
-
"frequency_penalty": self.params['frequency_penalty'],
|
215 |
-
}
|
216 |
-
if self.params['seed'] is not None: api_params["seed"] = self.params['seed']
|
217 |
-
if tools: api_params["tools"] = tools
|
218 |
-
if tool_choice: api_params["tool_choice"] = tool_choice
|
219 |
-
|
220 |
-
print(f"Agent's HFClientWrapper calling LLM: {self.model_id}")
|
221 |
-
completion = self.client.chat_completion(**api_params)
|
222 |
-
return completion
|
223 |
-
|
224 |
-
outer_scope_llm_params = {
|
225 |
-
"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p,
|
226 |
-
"frequency_penalty": frequency_penalty, "seed": seed
|
227 |
-
}
|
228 |
-
agent_model_adapter = HFClientWrapperForAgent(hf_inference_client, model_to_use, outer_scope_llm_params)
|
229 |
-
|
230 |
-
agent = CodeAgent(tools=active_mcp_tools, model=agent_model_adapter)
|
231 |
-
|
232 |
-
# Prime agent with history (all messages except the current user query)
|
233 |
-
agent.messages = llm_messages[:-1]
|
234 |
-
|
235 |
-
# CodeAgent.run expects a string query. Extract text from current user message.
|
236 |
-
current_query_for_agent = message_input_text.strip() if message_input_text else "User provided image(s)."
|
237 |
-
if not current_query_for_agent and image_files_list: # If only image, provide a generic text
|
238 |
-
current_query_for_agent = "Describe the image(s) or follow instructions related to them."
|
239 |
-
elif not current_query_for_agent and not image_files_list: # Should not happen due to earlier check
|
240 |
-
current_query_for_agent = "..."
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
258 |
try:
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
for chunk in stream:
|
267 |
-
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
268 |
-
delta = chunk.choices[0].delta
|
269 |
-
if hasattr(delta, 'content') and delta.content:
|
270 |
-
token_text = delta.content
|
271 |
-
response_stream_content += token_text
|
272 |
-
yield response_stream_content
|
273 |
-
print("\nCompleted streaming response generation.")
|
274 |
except Exception as e:
|
275 |
-
print(f"Error
|
276 |
-
yield response_stream_content + f"\nError: {str(e)}"
|
277 |
|
278 |
-
# Function to validate provider
|
279 |
def validate_provider(api_key, provider):
|
280 |
if not api_key.strip() and provider != "hf-inference":
|
281 |
return gr.update(value="hf-inference")
|
282 |
return gr.update(value=provider)
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
# GRADIO UI
|
285 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
|
286 |
chatbot = gr.Chatbot(
|
287 |
-
|
288 |
-
|
289 |
-
placeholder="Select a model
|
290 |
-
layout="panel"
|
291 |
-
bubble_full_width=False
|
292 |
)
|
|
|
293 |
|
294 |
-
|
|
|
295 |
placeholder="Type a message or upload images...",
|
296 |
-
show_label=False,
|
297 |
-
|
|
|
|
|
|
|
|
|
298 |
)
|
299 |
|
|
|
300 |
with gr.Accordion("Settings", open=False):
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
307 |
with gr.Row():
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
"microsoft/Phi-3-mini-4k-instruct",
|
322 |
]
|
323 |
-
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
|
324 |
-
gr.Markdown("[All Text models](https://huggingface.co/models?pipeline_tag=text-generation) | [All Multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text)")
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
info='Example: [{"name": "MyToolServer", "type": "sse", "url": "http://server_url/gradio_api/mcp/sse"}]',
|
332 |
-
lines=3,
|
333 |
-
placeholder='Enter a JSON list of server configurations here.',
|
334 |
-
value=json.dumps(DEFAULT_MCP_SERVERS, indent=2) # Pre-fill with defaults
|
335 |
)
|
336 |
-
mcp_load_status_display = gr.Textbox(label="MCP Load Status", interactive=False)
|
337 |
-
load_mcp_tools_btn = gr.Button("Load/Reload MCP Tools")
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
if mcp_tools_collection and len(mcp_tools_collection.tools) > 0:
|
350 |
-
loaded_tool_names = [t.name for t in mcp_tools_collection.tools]
|
351 |
-
return f"Successfully loaded {len(loaded_tool_names)} MCP tools: {', '.join(loaded_tool_names)}"
|
352 |
-
else:
|
353 |
-
return "No MCP tools loaded, or an error occurred during loading. Check console for details."
|
354 |
-
except json.JSONDecodeError:
|
355 |
-
return "Error: Invalid JSON format in MCP server configurations."
|
356 |
-
except Exception as e:
|
357 |
-
print(f"Unhandled error in handle_load_mcp_tools_click: {e}")
|
358 |
-
return f"Error loading MCP tools: {str(e)}. Check console."
|
359 |
-
|
360 |
-
load_mcp_tools_btn.click(
|
361 |
-
handle_load_mcp_tools_click,
|
362 |
-
inputs=[mcp_server_config_input],
|
363 |
-
outputs=mcp_load_status_display
|
364 |
)
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
def filter_models(search_term):
|
372 |
-
|
|
|
|
|
|
|
373 |
|
374 |
-
# Function to set custom model from radio
|
375 |
def set_custom_model_from_radio(selected):
|
376 |
-
|
|
|
377 |
|
378 |
-
#
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
#
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
#
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
427 |
)
|
|
|
428 |
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
|
|
433 |
|
434 |
-
#
|
435 |
-
|
436 |
-
|
|
|
|
|
|
|
|
|
437 |
|
438 |
print("Gradio interface initialized.")
|
|
|
439 |
if __name__ == "__main__":
|
440 |
-
print("Launching the
|
441 |
-
demo.launch(show_api=
|
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
import requests
|
9 |
+
from mcp.client.sse import SSEServerParameters
|
10 |
+
from mcp.jsonrpc.client import JsonRpcClient
|
11 |
+
from mcp.client.base import ServerCapabilities
|
|
|
12 |
|
13 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
14 |
print("Access token loaded.")
|
15 |
|
16 |
+
# Function to encode image to base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def encode_image(image_path):
|
18 |
if not image_path:
|
19 |
print("No image path provided")
|
|
|
21 |
|
22 |
try:
|
23 |
print(f"Encoding image from path: {image_path}")
|
24 |
+
|
25 |
+
# If it's already a PIL Image
|
26 |
if isinstance(image_path, Image.Image):
|
27 |
image = image_path
|
28 |
else:
|
29 |
+
# Try to open the image file
|
30 |
image = Image.open(image_path)
|
31 |
|
32 |
+
# Convert to RGB if image has an alpha channel (RGBA)
|
33 |
if image.mode == 'RGBA':
|
34 |
image = image.convert('RGB')
|
35 |
|
36 |
+
# Encode to base64
|
37 |
buffered = io.BytesIO()
|
38 |
image.save(buffered, format="JPEG")
|
39 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
43 |
print(f"Error encoding image: {e}")
|
44 |
return None
|
45 |
|
46 |
+
# MCP Client class for handling MCP server connections
|
47 |
+
class MCPClient:
|
48 |
+
def __init__(self, url):
|
49 |
+
self.url = url
|
50 |
+
self.client = None
|
51 |
+
self.capabilities = None
|
52 |
+
self.tools = None
|
53 |
+
|
54 |
+
def connect(self):
|
55 |
+
try:
|
56 |
+
# Connect to the MCP server using SSE
|
57 |
+
server_params = SSEServerParameters(url=self.url)
|
58 |
+
self.client = JsonRpcClient(server_params)
|
59 |
+
self.client.connect()
|
60 |
+
|
61 |
+
# Get server capabilities
|
62 |
+
self.capabilities = ServerCapabilities(self.client)
|
63 |
+
|
64 |
+
# List available tools
|
65 |
+
self.tools = self.capabilities.list_tools()
|
66 |
+
print(f"Connected to MCP Server. Available tools: {[tool.name for tool in self.tools]}")
|
67 |
+
return True
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error connecting to MCP server: {e}")
|
70 |
+
return False
|
71 |
+
|
72 |
+
def call_tool(self, tool_name, **kwargs):
|
73 |
+
if not self.client or not self.tools:
|
74 |
+
print("MCP client not initialized or no tools available")
|
75 |
+
return None
|
76 |
+
|
77 |
+
# Find the tool with the given name
|
78 |
+
tool = next((t for t in self.tools if t.name == tool_name), None)
|
79 |
+
if not tool:
|
80 |
+
print(f"Tool '{tool_name}' not found")
|
81 |
+
return None
|
82 |
+
|
83 |
+
try:
|
84 |
+
# Call the tool with the given arguments
|
85 |
+
result = self.client.call_method("tools/call", {"name": tool_name, "arguments": kwargs})
|
86 |
+
return result
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error calling tool '{tool_name}': {e}")
|
89 |
+
return None
|
90 |
+
|
91 |
+
def close(self):
|
92 |
+
if self.client:
|
93 |
+
try:
|
94 |
+
self.client.close()
|
95 |
+
print("MCP client connection closed")
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error closing MCP client connection: {e}")
|
98 |
+
|
99 |
+
# Function to convert text to audio using Kokoro MCP server
|
100 |
+
def text_to_audio(text, speed=1.0, mcp_url=None):
|
101 |
+
"""Convert text to audio using Kokoro MCP server if available.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
text (str): Text to convert to speech
|
105 |
+
speed (float): Speed multiplier for speech
|
106 |
+
mcp_url (str): URL of the Kokoro MCP server
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
tuple: (sample_rate, audio_array) or None if conversion fails
|
110 |
+
"""
|
111 |
+
if not text or not mcp_url:
|
112 |
+
return None
|
113 |
+
|
114 |
+
try:
|
115 |
+
# Connect to MCP server
|
116 |
+
mcp_client = MCPClient(mcp_url)
|
117 |
+
if not mcp_client.connect():
|
118 |
+
return None
|
119 |
+
|
120 |
+
# Call the text_to_audio tool
|
121 |
+
result = mcp_client.call_tool("text_to_audio", text=text, speed=speed)
|
122 |
+
mcp_client.close()
|
123 |
+
|
124 |
+
if not result:
|
125 |
+
return None
|
126 |
+
|
127 |
+
# Process the result - convert base64 audio to numpy array
|
128 |
+
import numpy as np
|
129 |
+
import base64
|
130 |
+
|
131 |
+
# Assuming the result contains base64-encoded WAV data
|
132 |
+
audio_b64 = result
|
133 |
+
audio_data = base64.b64decode(audio_b64)
|
134 |
+
|
135 |
+
# Convert to numpy array - this is simplified and may need adjustment
|
136 |
+
# based on the actual output format from the Kokoro MCP server
|
137 |
+
import io
|
138 |
+
import soundfile as sf
|
139 |
+
|
140 |
+
audio_io = io.BytesIO(audio_data)
|
141 |
+
audio_array, sample_rate = sf.read(audio_io)
|
142 |
+
|
143 |
+
return (sample_rate, audio_array)
|
144 |
+
except Exception as e:
|
145 |
+
print(f"Error converting text to audio: {e}")
|
146 |
+
return None
|
147 |
+
|
148 |
def respond(
|
149 |
+
message,
|
150 |
+
image_files,
|
151 |
history: list[tuple[str, str]],
|
152 |
system_message,
|
153 |
max_tokens,
|
|
|
158 |
provider,
|
159 |
custom_api_key,
|
160 |
custom_model,
|
161 |
+
model_search_term,
|
162 |
+
selected_model,
|
163 |
+
mcp_server_url=None,
|
164 |
+
tts_enabled=False,
|
165 |
+
tts_speed=1.0
|
166 |
):
|
167 |
+
print(f"Received message: {message}")
|
168 |
+
print(f"Received {len(image_files) if image_files else 0} images")
|
169 |
+
print(f"History: {history}")
|
170 |
+
print(f"System message: {system_message}")
|
171 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
172 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
173 |
+
print(f"Selected provider: {provider}")
|
174 |
+
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
|
175 |
+
print(f"Selected model (custom_model): {custom_model}")
|
176 |
+
print(f"Model search term: {model_search_term}")
|
177 |
+
print(f"Selected model from radio: {selected_model}")
|
178 |
+
print(f"MCP Server URL: {mcp_server_url}")
|
179 |
+
print(f"TTS Enabled: {tts_enabled}")
|
180 |
+
|
181 |
+
# Determine which token to use
|
182 |
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
183 |
+
|
184 |
+
if custom_api_key.strip() != "":
|
185 |
+
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
186 |
+
else:
|
187 |
+
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
188 |
+
|
189 |
+
# Initialize the Inference Client with the provider and appropriate token
|
190 |
+
client = InferenceClient(token=token_to_use, provider=provider)
|
191 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
192 |
|
193 |
+
# Convert seed to None if -1 (meaning random)
|
194 |
+
if seed == -1:
|
195 |
+
seed = None
|
196 |
|
197 |
+
# Create multimodal content if images are present
|
198 |
+
if image_files and len(image_files) > 0:
|
199 |
+
# Process the user message to include images
|
200 |
+
user_content = []
|
201 |
+
|
202 |
+
# Add text part if there is any
|
203 |
+
if message and message.strip():
|
204 |
+
user_content.append({
|
205 |
+
"type": "text",
|
206 |
+
"text": message
|
207 |
+
})
|
208 |
+
|
209 |
+
# Add image parts
|
210 |
+
for img in image_files:
|
211 |
+
if img is not None:
|
212 |
+
# Get raw image data from path
|
213 |
+
try:
|
214 |
+
encoded_image = encode_image(img)
|
215 |
+
if encoded_image:
|
216 |
+
user_content.append({
|
217 |
+
"type": "image_url",
|
218 |
+
"image_url": {
|
219 |
+
"url": f"data:image/jpeg;base64,{encoded_image}"
|
220 |
+
}
|
221 |
+
})
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Error encoding image: {e}")
|
224 |
+
else:
|
225 |
+
# Text-only message
|
226 |
+
user_content = message
|
227 |
+
|
228 |
+
# Prepare messages in the format expected by the API
|
229 |
+
messages = [{"role": "system", "content": system_message}]
|
230 |
+
print("Initial messages array constructed.")
|
231 |
+
|
232 |
+
# Add conversation history to the context
|
233 |
+
for val in history:
|
234 |
+
user_part = val[0]
|
235 |
+
assistant_part = val[1]
|
236 |
+
if user_part:
|
237 |
+
# Handle both text-only and multimodal messages in history
|
238 |
+
if isinstance(user_part, tuple) and len(user_part) == 2:
|
239 |
+
# This is a multimodal message with text and images
|
240 |
+
history_content = []
|
241 |
+
if user_part[0]: # Text
|
242 |
+
history_content.append({
|
243 |
+
"type": "text",
|
244 |
+
"text": user_part[0]
|
245 |
})
|
246 |
+
|
247 |
+
for img in user_part[1]: # Images
|
248 |
+
if img:
|
249 |
+
try:
|
250 |
+
encoded_img = encode_image(img)
|
251 |
+
if encoded_img:
|
252 |
+
history_content.append({
|
253 |
+
"type": "image_url",
|
254 |
+
"image_url": {
|
255 |
+
"url": f"data:image/jpeg;base64,{encoded_img}"
|
256 |
+
}
|
257 |
+
})
|
258 |
+
except Exception as e:
|
259 |
+
print(f"Error encoding history image: {e}")
|
260 |
+
|
261 |
+
messages.append({"role": "user", "content": history_content})
|
262 |
+
else:
|
263 |
+
# Regular text message
|
264 |
+
messages.append({"role": "user", "content": user_part})
|
265 |
+
print(f"Added user message to context (type: {type(user_part)})")
|
266 |
+
|
267 |
+
if assistant_part:
|
268 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
269 |
+
print(f"Added assistant message to context: {assistant_part}")
|
270 |
|
271 |
+
# Append the latest user message
|
272 |
+
messages.append({"role": "user", "content": user_content})
|
273 |
+
print(f"Latest user message appended (content type: {type(user_content)})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
# Determine which model to use, prioritizing custom_model if provided
|
276 |
+
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
|
|
|
|
|
|
|
|
277 |
print(f"Model selected for inference: {model_to_use}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
+
# Start with an empty string to build the response as tokens stream in
|
280 |
+
response = ""
|
281 |
+
print(f"Sending request to {provider} provider.")
|
282 |
+
|
283 |
+
# Prepare parameters for the chat completion request
|
284 |
+
parameters = {
|
285 |
+
"max_tokens": max_tokens,
|
286 |
+
"temperature": temperature,
|
287 |
+
"top_p": top_p,
|
288 |
+
"frequency_penalty": frequency_penalty,
|
289 |
+
}
|
290 |
+
|
291 |
+
if seed is not None:
|
292 |
+
parameters["seed"] = seed
|
293 |
|
294 |
+
# Use the InferenceClient for making the request
|
295 |
+
try:
|
296 |
+
# Create a generator for the streaming response
|
297 |
+
stream = client.chat_completion(
|
298 |
+
model=model_to_use,
|
299 |
+
messages=messages,
|
300 |
+
stream=True,
|
301 |
+
**parameters
|
302 |
+
)
|
303 |
+
|
304 |
+
print("Received tokens: ", end="", flush=True)
|
305 |
+
|
306 |
+
# Process the streaming response
|
307 |
+
for chunk in stream:
|
308 |
+
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
309 |
+
# Extract the content from the response
|
310 |
+
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
311 |
+
token_text = chunk.choices[0].delta.content
|
312 |
+
if token_text:
|
313 |
+
print(token_text, end="", flush=True)
|
314 |
+
response += token_text
|
315 |
+
yield response
|
316 |
+
|
317 |
+
print()
|
318 |
+
except Exception as e:
|
319 |
+
print(f"Error during inference: {e}")
|
320 |
+
response += f"\nError: {str(e)}"
|
321 |
+
yield response
|
322 |
|
323 |
+
print("Completed response generation.")
|
324 |
+
|
325 |
+
# If TTS is enabled and we have a valid MCP server URL, convert response to audio
|
326 |
+
if tts_enabled and mcp_server_url and response:
|
327 |
try:
|
328 |
+
print(f"Converting response to audio using MCP server: {mcp_server_url}")
|
329 |
+
audio_data = text_to_audio(response, tts_speed, mcp_server_url)
|
330 |
+
if audio_data:
|
331 |
+
# Here we would need to handle returning both text and audio
|
332 |
+
# This would require modifying the Gradio interface to support this
|
333 |
+
print("Successfully converted text to audio")
|
334 |
+
# For now, we'll just return the text response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
except Exception as e:
|
336 |
+
print(f"Error converting text to audio: {e}")
|
|
|
337 |
|
338 |
+
# Function to validate provider selection based on BYOK
|
339 |
def validate_provider(api_key, provider):
|
340 |
if not api_key.strip() and provider != "hf-inference":
|
341 |
return gr.update(value="hf-inference")
|
342 |
return gr.update(value=provider)
|
343 |
|
344 |
+
# Function to test MCP server connection
|
345 |
+
def test_mcp_connection(mcp_url):
|
346 |
+
if not mcp_url or not mcp_url.strip():
|
347 |
+
return "Please enter an MCP server URL"
|
348 |
+
|
349 |
+
try:
|
350 |
+
mcp_client = MCPClient(mcp_url)
|
351 |
+
if mcp_client.connect():
|
352 |
+
tools = [tool.name for tool in mcp_client.tools]
|
353 |
+
mcp_client.close()
|
354 |
+
return f"Successfully connected to MCP server. Available tools: {', '.join(tools)}"
|
355 |
+
else:
|
356 |
+
return "Failed to connect to MCP server"
|
357 |
+
except Exception as e:
|
358 |
+
return f"Error connecting to MCP server: {str(e)}"
|
359 |
+
|
360 |
# GRADIO UI
|
361 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
362 |
+
# Create the chatbot component
|
363 |
chatbot = gr.Chatbot(
|
364 |
+
height=600,
|
365 |
+
show_copy_button=True,
|
366 |
+
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
|
367 |
+
layout="panel"
|
|
|
368 |
)
|
369 |
+
print("Chatbot interface created.")
|
370 |
|
371 |
+
# Multimodal textbox for messages (combines text and file uploads)
|
372 |
+
msg = gr.MultimodalTextbox(
|
373 |
placeholder="Type a message or upload images...",
|
374 |
+
show_label=False,
|
375 |
+
container=False,
|
376 |
+
scale=12,
|
377 |
+
file_types=["image"],
|
378 |
+
file_count="multiple",
|
379 |
+
sources=["upload"]
|
380 |
)
|
381 |
|
382 |
+
# Create accordion for settings
|
383 |
with gr.Accordion("Settings", open=False):
|
384 |
+
# System message
|
385 |
+
system_message_box = gr.Textbox(
|
386 |
+
value="You are a helpful AI assistant that can understand images and text.",
|
387 |
+
placeholder="You are a helpful assistant.",
|
388 |
+
label="System Prompt"
|
389 |
+
)
|
390 |
+
|
391 |
+
# Generation parameters
|
392 |
with gr.Row():
|
393 |
+
with gr.Column():
|
394 |
+
max_tokens_slider = gr.Slider(
|
395 |
+
minimum=1,
|
396 |
+
maximum=4096,
|
397 |
+
value=512,
|
398 |
+
step=1,
|
399 |
+
label="Max tokens"
|
400 |
+
)
|
401 |
+
|
402 |
+
temperature_slider = gr.Slider(
|
403 |
+
minimum=0.1,
|
404 |
+
maximum=4.0,
|
405 |
+
value=0.7,
|
406 |
+
step=0.1,
|
407 |
+
label="Temperature"
|
408 |
+
)
|
409 |
+
|
410 |
+
top_p_slider = gr.Slider(
|
411 |
+
minimum=0.1,
|
412 |
+
maximum=1.0,
|
413 |
+
value=0.95,
|
414 |
+
step=0.05,
|
415 |
+
label="Top-P"
|
416 |
+
)
|
417 |
+
|
418 |
+
with gr.Column():
|
419 |
+
frequency_penalty_slider = gr.Slider(
|
420 |
+
minimum=-2.0,
|
421 |
+
maximum=2.0,
|
422 |
+
value=0.0,
|
423 |
+
step=0.1,
|
424 |
+
label="Frequency Penalty"
|
425 |
+
)
|
426 |
+
|
427 |
+
seed_slider = gr.Slider(
|
428 |
+
minimum=-1,
|
429 |
+
maximum=65535,
|
430 |
+
value=-1,
|
431 |
+
step=1,
|
432 |
+
label="Seed (-1 for random)"
|
433 |
+
)
|
434 |
+
|
435 |
+
# Provider selection
|
436 |
+
providers_list = [
|
437 |
+
"hf-inference", # Default Hugging Face Inference
|
438 |
+
"cerebras", # Cerebras provider
|
439 |
+
"together", # Together AI
|
440 |
+
"sambanova", # SambaNova
|
441 |
+
"novita", # Novita AI
|
442 |
+
"cohere", # Cohere
|
443 |
+
"fireworks-ai", # Fireworks AI
|
444 |
+
"hyperbolic", # Hyperbolic
|
445 |
+
"nebius", # Nebius
|
446 |
+
]
|
447 |
+
|
448 |
+
provider_radio = gr.Radio(
|
449 |
+
choices=providers_list,
|
450 |
+
value="hf-inference",
|
451 |
+
label="Inference Provider",
|
452 |
+
)
|
453 |
+
|
454 |
+
# New BYOK textbox
|
455 |
+
byok_textbox = gr.Textbox(
|
456 |
+
value="",
|
457 |
+
label="BYOK (Bring Your Own Key)",
|
458 |
+
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
459 |
+
placeholder="Enter your Hugging Face API token",
|
460 |
+
type="password" # Hide the API key for security
|
461 |
+
)
|
462 |
+
|
463 |
+
# Custom model box
|
464 |
+
custom_model_box = gr.Textbox(
|
465 |
+
value="",
|
466 |
+
label="Custom Model",
|
467 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
468 |
+
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
469 |
+
)
|
470 |
+
|
471 |
+
# Model search
|
472 |
+
model_search_box = gr.Textbox(
|
473 |
+
label="Filter Models",
|
474 |
+
placeholder="Search for a featured model...",
|
475 |
+
lines=1
|
476 |
+
)
|
477 |
+
|
478 |
+
# Featured models list
|
479 |
+
# Updated to include multimodal models
|
480 |
+
models_list = [
|
481 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
482 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
483 |
+
"meta-llama/Llama-3.1-70B-Instruct",
|
484 |
+
"meta-llama/Llama-3.0-70B-Instruct",
|
485 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
486 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
487 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
488 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
489 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
490 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
491 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
492 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
493 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
494 |
+
"Qwen/Qwen3-235B-A22B",
|
495 |
+
"Qwen/Qwen3-32B",
|
496 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
497 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
498 |
+
"Qwen/Qwen2.5-0.5B-Instruct",
|
499 |
+
"Qwen/QwQ-32B",
|
500 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
501 |
+
"microsoft/Phi-3.5-mini-instruct",
|
502 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
503 |
"microsoft/Phi-3-mini-4k-instruct",
|
504 |
]
|
|
|
|
|
505 |
|
506 |
+
featured_model_radio = gr.Radio(
|
507 |
+
label="Select a model below",
|
508 |
+
choices=models_list,
|
509 |
+
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
|
510 |
+
interactive=True
|
|
|
|
|
|
|
|
|
511 |
)
|
|
|
|
|
512 |
|
513 |
+
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
514 |
+
|
515 |
+
# New Accordion for MCP Settings
|
516 |
+
with gr.Accordion("MCP Server Settings", open=False):
|
517 |
+
mcp_server_url = gr.Textbox(
|
518 |
+
value="",
|
519 |
+
label="MCP Server URL",
|
520 |
+
info="Enter the URL of an MCP server to connect to (e.g., https://example-kokoro-mcp.hf.space/gradio_api/mcp/sse)",
|
521 |
+
placeholder="https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
)
|
523 |
+
|
524 |
+
test_connection_btn = gr.Button("Test Connection")
|
525 |
+
connection_status = gr.Textbox(
|
526 |
+
label="Connection Status",
|
527 |
+
interactive=False
|
528 |
+
)
|
529 |
+
|
530 |
+
tts_enabled = gr.Checkbox(
|
531 |
+
label="Enable Text-to-Speech",
|
532 |
+
value=False,
|
533 |
+
info="Convert AI responses to speech using the Kokoro TTS service"
|
534 |
+
)
|
535 |
+
|
536 |
+
tts_speed = gr.Slider(
|
537 |
+
minimum=0.5,
|
538 |
+
maximum=2.0,
|
539 |
+
value=1.0,
|
540 |
+
step=0.1,
|
541 |
+
label="Speech Speed"
|
542 |
+
)
|
543 |
+
|
544 |
+
gr.Markdown("""
|
545 |
+
### About MCP Support
|
546 |
+
|
547 |
+
This app can connect to Model Context Protocol (MCP) servers to extend its capabilities.
|
548 |
+
|
549 |
+
For example, connecting to a Kokoro MCP server allows for text-to-speech conversion.
|
550 |
+
|
551 |
+
To use this feature:
|
552 |
+
1. Enter the MCP server URL
|
553 |
+
2. Test the connection
|
554 |
+
3. Enable the desired features (e.g., TTS)
|
555 |
+
4. Chat normally with the AI
|
556 |
+
|
557 |
+
Note: TTS functionality requires an active connection to a Kokoro MCP server.
|
558 |
+
""")
|
559 |
|
560 |
+
# Chat history state
|
561 |
+
chat_history = gr.State([])
|
562 |
+
|
563 |
+
# Connect the test connection button
|
564 |
+
test_connection_btn.click(
|
565 |
+
fn=test_mcp_connection,
|
566 |
+
inputs=[mcp_server_url],
|
567 |
+
outputs=[connection_status]
|
568 |
+
)
|
569 |
+
|
570 |
+
# Function to filter models
|
571 |
def filter_models(search_term):
|
572 |
+
print(f"Filtering models with search term: {search_term}")
|
573 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
574 |
+
print(f"Filtered models: {filtered}")
|
575 |
+
return gr.update(choices=filtered)
|
576 |
|
577 |
+
# Function to set custom model from radio
|
578 |
def set_custom_model_from_radio(selected):
|
579 |
+
print(f"Featured model selected: {selected}")
|
580 |
+
return selected
|
581 |
|
582 |
+
# Function for the chat interface
|
583 |
+
def user(user_message, history):
|
584 |
+
# Debug logging for troubleshooting
|
585 |
+
print(f"User message received: {user_message}")
|
586 |
+
|
587 |
+
# Skip if message is empty (no text and no files)
|
588 |
+
if not user_message or (not user_message.get("text") and not user_message.get("files")):
|
589 |
+
print("Empty message, skipping")
|
590 |
+
return history
|
591 |
+
|
592 |
+
# Prepare multimodal message format
|
593 |
+
text_content = user_message.get("text", "").strip()
|
594 |
+
files = user_message.get("files", [])
|
595 |
+
|
596 |
+
print(f"Text content: {text_content}")
|
597 |
+
print(f"Files: {files}")
|
598 |
+
|
599 |
+
# If both text and files are empty, skip
|
600 |
+
if not text_content and not files:
|
601 |
+
print("No content to display")
|
602 |
+
return history
|
603 |
+
|
604 |
+
# Add message with images to history
|
605 |
+
if files and len(files) > 0:
|
606 |
+
# Add text message first if it exists
|
607 |
+
if text_content:
|
608 |
+
# Add a separate text message
|
609 |
+
print(f"Adding text message: {text_content}")
|
610 |
+
history.append([text_content, None])
|
611 |
+
|
612 |
+
# Then add each image file separately
|
613 |
+
for file_path in files:
|
614 |
+
if file_path and isinstance(file_path, str):
|
615 |
+
print(f"Adding image: {file_path}")
|
616 |
+
# Add image as a separate message with no text
|
617 |
+
history.append([f"", None])
|
618 |
+
|
619 |
+
return history
|
620 |
+
else:
|
621 |
+
# For text-only messages
|
622 |
+
print(f"Adding text-only message: {text_content}")
|
623 |
+
history.append([text_content, None])
|
624 |
+
return history
|
625 |
|
626 |
+
# Define bot response function
|
627 |
+
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model, mcp_url, tts_on, tts_spd):
|
628 |
+
# Check if history is valid
|
629 |
+
if not history or len(history) == 0:
|
630 |
+
print("No history to process")
|
631 |
+
return history
|
632 |
+
|
633 |
+
# Get the most recent message and detect if it's an image
|
634 |
+
user_message = history[-1][0]
|
635 |
+
print(f"Processing user message: {user_message}")
|
636 |
+
|
637 |
+
is_image = False
|
638 |
+
image_path = None
|
639 |
+
text_content = user_message
|
640 |
+
|
641 |
+
# Check if this is an image message (marked with ![Image])
|
642 |
+
if isinstance(user_message, str) and user_message.startswith(":
|
643 |
+
is_image = True
|
644 |
+
# Extract image path from markdown format 
|
645 |
+
image_path = user_message.replace(".replace(")", "")
|
646 |
+
print(f"Image detected: {image_path}")
|
647 |
+
text_content = "" # No text for image-only messages
|
648 |
+
|
649 |
+
# Look back for text context if this is an image
|
650 |
+
text_context = ""
|
651 |
+
if is_image and len(history) > 1:
|
652 |
+
# Use the previous message as context if it's text
|
653 |
+
prev_message = history[-2][0]
|
654 |
+
if isinstance(prev_message, str) and not prev_message.startswith(":
|
655 |
+
text_context = prev_message
|
656 |
+
print(f"Using text context from previous message: {text_context}")
|
657 |
+
|
658 |
+
# Process message through respond function
|
659 |
+
history[-1][1] = ""
|
660 |
+
|
661 |
+
# Use either the image or text for the API
|
662 |
+
if is_image:
|
663 |
+
# For image messages
|
664 |
+
for response in respond(
|
665 |
+
text_context, # Text context from previous message if any
|
666 |
+
[image_path], # Current image
|
667 |
+
history[:-1], # Previous history
|
668 |
+
system_msg,
|
669 |
+
max_tokens,
|
670 |
+
temperature,
|
671 |
+
top_p,
|
672 |
+
freq_penalty,
|
673 |
+
seed,
|
674 |
+
provider,
|
675 |
+
api_key,
|
676 |
+
custom_model,
|
677 |
+
search_term,
|
678 |
+
selected_model,
|
679 |
+
mcp_url,
|
680 |
+
tts_on,
|
681 |
+
tts_spd
|
682 |
+
):
|
683 |
+
history[-1][1] = response
|
684 |
+
yield history
|
685 |
+
else:
|
686 |
+
# For text-only messages
|
687 |
+
for response in respond(
|
688 |
+
text_content, # Text message
|
689 |
+
None, # No image
|
690 |
+
history[:-1], # Previous history
|
691 |
+
system_msg,
|
692 |
+
max_tokens,
|
693 |
+
temperature,
|
694 |
+
top_p,
|
695 |
+
freq_penalty,
|
696 |
+
seed,
|
697 |
+
provider,
|
698 |
+
api_key,
|
699 |
+
custom_model,
|
700 |
+
search_term,
|
701 |
+
selected_model,
|
702 |
+
mcp_url,
|
703 |
+
tts_on,
|
704 |
+
tts_spd
|
705 |
+
):
|
706 |
+
history[-1][1] = response
|
707 |
+
yield history
|
708 |
+
|
709 |
+
# Event handlers - only using the MultimodalTextbox's built-in submit functionality
|
710 |
+
msg.submit(
|
711 |
+
user,
|
712 |
+
[msg, chatbot],
|
713 |
+
[chatbot],
|
714 |
+
queue=False
|
715 |
+
).then(
|
716 |
+
bot,
|
717 |
+
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
718 |
+
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
719 |
+
model_search_box, featured_model_radio, mcp_server_url, tts_enabled, tts_speed],
|
720 |
+
[chatbot]
|
721 |
+
).then(
|
722 |
+
lambda: {"text": "", "files": []}, # Clear inputs after submission
|
723 |
+
None,
|
724 |
+
[msg]
|
725 |
+
)
|
726 |
+
|
727 |
+
# Connect the model filter to update the radio choices
|
728 |
+
model_search_box.change(
|
729 |
+
fn=filter_models,
|
730 |
+
inputs=model_search_box,
|
731 |
+
outputs=featured_model_radio
|
732 |
+
)
|
733 |
+
print("Model search box change event linked.")
|
734 |
|
735 |
+
# Connect the featured model radio to update the custom model box
|
736 |
+
featured_model_radio.change(
|
737 |
+
fn=set_custom_model_from_radio,
|
738 |
+
inputs=featured_model_radio,
|
739 |
+
outputs=custom_model_box
|
740 |
)
|
741 |
+
print("Featured model radio button change event linked.")
|
742 |
|
743 |
+
# Connect the BYOK textbox to validate provider selection
|
744 |
+
byok_textbox.change(
|
745 |
+
fn=validate_provider,
|
746 |
+
inputs=[byok_textbox, provider_radio],
|
747 |
+
outputs=provider_radio
|
748 |
+
)
|
749 |
+
print("BYOK textbox change event linked.")
|
750 |
|
751 |
+
# Also validate provider when the radio changes to ensure consistency
|
752 |
+
provider_radio.change(
|
753 |
+
fn=validate_provider,
|
754 |
+
inputs=[byok_textbox, provider_radio],
|
755 |
+
outputs=provider_radio
|
756 |
+
)
|
757 |
+
print("Provider radio button change event linked.")
|
758 |
|
759 |
print("Gradio interface initialized.")
|
760 |
+
|
761 |
if __name__ == "__main__":
|
762 |
+
print("Launching the demo application.")
|
763 |
+
demo.launch(show_api=True)
|