import gradio as gr import torch from transformers import T5Tokenizer, T5ForConditionalGeneration if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", torch_dtype=torch.float16) def generate( prompt, history, temperature=temperature, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, temperature=temperature, top_p=top_p, top_k=top_k ): input_text = f"{prompt}, {history}" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) outputs = model.generate(input_ids, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, temperature=temperature, top_p=top_p, top_k=top_k) better_prompt = tokenizer.decode(outputs[0]) return better_prompt additional_inputs=[ gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens"), gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty"), gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature"), gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P"), gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, label="Top K"), ] examples=[["Expand the following prompt to add more detail: A storefront with 'Text to Image' written on it.", None, None ]] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="SuperPrompt-v1", description="Make your prompts more detailed! Especially for AI Art!!!", examples=examples, concurrency_limit=20, ).launch(show_api=False)