Spaces:
Running
Running
File size: 1,341 Bytes
b971d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py, modified by Puyuan Peng
import torch
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
>>> lengths = torch.tensor([1, 3, 2, 5])
>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
def generate_partial_autoregressive_mask(sz, start, end):
mask = torch.zeros(sz, sz).bool()
mask[start:end, start:end] = torch.triu(torch.ones(end-start, end-start,dtype=torch.bool), diagonal=1)
mask[:start, start:end] = True
mask[end:, start:end] = True
return mask
|