Spaces:
Paused
Paused
"""SAMPLING ONLY.""" | |
import pdb | |
import random | |
import numpy as np | |
import torch | |
from model_lib.ControlNet.ldm.modules.diffusionmodules.util import ( | |
extract_into_tensor, make_ddim_sampling_parameters, make_ddim_timesteps, | |
noise_like) | |
from model_lib.ControlNet.ldm.util import default | |
from tqdm import tqdm | |
class DDIMSampler(object): | |
def __init__(self, model, schedule="linear", **kwargs): | |
super().__init__() | |
self.model = model | |
self.ddpm_num_timesteps = model.num_timesteps | |
self.schedule = schedule | |
def register_buffer(self, name, attr): | |
if type(attr) == torch.Tensor: | |
if attr.device != torch.device("cuda"): | |
attr = attr.to(torch.device("cuda")) | |
setattr(self, name, attr) | |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): | |
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, | |
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) | |
alphas_cumprod = self.model.alphas_cumprod | |
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) | |
self.register_buffer('betas', to_torch(self.model.betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) | |
# ddim sampling parameters | |
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), | |
ddim_timesteps=self.ddim_timesteps, | |
eta=ddim_eta,verbose=verbose) | |
self.register_buffer('ddim_sigmas', ddim_sigmas) | |
self.register_buffer('ddim_alphas', ddim_alphas) | |
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) | |
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) | |
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( | |
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( | |
1 - self.alphas_cumprod / self.alphas_cumprod_prev)) | |
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) | |
def sample(self, | |
S, | |
batch_size, | |
shape, | |
conditioning=None, | |
callback=None, | |
normals_sequence=None, | |
img_callback=None, | |
quantize_x0=False, | |
eta=0., | |
mask=None, | |
x0=None, | |
temperature=1., | |
noise_dropout=0., | |
score_corrector=None, | |
corrector_kwargs=None, | |
verbose=True, | |
x_T=None, | |
log_every_t=100, | |
unconditional_guidance_scale=1., | |
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... | |
dynamic_threshold=None, | |
ucg_schedule=None, | |
inpaint=None, | |
**kwargs | |
): | |
if conditioning is not None: | |
if isinstance(conditioning, dict): | |
ctmp = conditioning[list(conditioning.keys())[0]] | |
while isinstance(ctmp, list): ctmp = ctmp[0] | |
cbs = ctmp.shape[0] | |
if cbs != batch_size: | |
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | |
elif isinstance(conditioning, list): | |
for ctmp in conditioning: | |
if ctmp.shape[0] != batch_size: | |
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | |
else: | |
if conditioning.shape[0] != batch_size: | |
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") | |
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) | |
# sampling | |
C, H, W = shape | |
size = (batch_size, C, H, W) | |
print(f'Data shape for DDIM sampling is {C, H, W}') | |
samples, intermediates = self.ddim_sampling(conditioning, size, | |
callback=callback, | |
img_callback=img_callback, | |
quantize_denoised=quantize_x0, | |
mask=mask, x0=x0, | |
ddim_use_original_steps=False, | |
noise_dropout=noise_dropout, | |
temperature=temperature, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
x_T=x_T, | |
log_every_t=log_every_t, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
dynamic_threshold=dynamic_threshold, | |
ucg_schedule=ucg_schedule, | |
inpaint=inpaint | |
) | |
return samples, intermediates | |
def ddim_sampling(self, cond, shape, | |
x_T=None, ddim_use_original_steps=False, | |
callback=None, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, img_callback=None, log_every_t=100, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, | |
ucg_schedule=None,inpaint=None): | |
device = self.model.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
if timesteps is None: | |
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps | |
elif timesteps is not None and not ddim_use_original_steps: | |
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 | |
timesteps = self.ddim_timesteps[:subset_end] | |
intermediates = {'x_inter': [img], 'pred_x0': [img]} | |
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) | |
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] | |
print(f"Running DDIM Sampling with {total_steps} timesteps") | |
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) | |
for i, step in enumerate(iterator): | |
index = total_steps - i - 1 | |
ts = torch.full((b,), step, device=device, dtype=torch.long) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? | |
img = img_orig * mask + (1. - mask) * img | |
if ucg_schedule is not None: | |
assert len(ucg_schedule) == len(time_range) | |
unconditional_guidance_scale = ucg_schedule[i] | |
model_output = self.p_sample_ddim(img, cond, ts, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
inpaint=inpaint) | |
outs = self.pred_x_prev_from_eps(img, cond, ts, model_output, index=index, use_original_steps=ddim_use_original_steps, | |
quantize_denoised=quantize_denoised, temperature=temperature, | |
noise_dropout=noise_dropout, score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
dynamic_threshold=dynamic_threshold) | |
img, pred_x0 = outs | |
if callback: callback(i) | |
if img_callback: img_callback(pred_x0, i) | |
if index % log_every_t == 0 or index == total_steps - 1: | |
intermediates['x_inter'].append(img) | |
intermediates['pred_x0'].append(pred_x0) | |
return img, intermediates | |
def p_sample_ddim(self, x, c, t, unconditional_guidance_scale=1., unconditional_conditioning=None, inpaint=None): | |
if inpaint is None: | |
x_In = x | |
else: | |
x_In = torch.cat([x,inpaint],dim=1) | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: | |
model_output = self.model.apply_model(x_In, t, c) | |
else: | |
x_in = torch.cat([x_In] * 2) | |
t_in = torch.cat([t] * 2) | |
if isinstance(c, dict): | |
assert isinstance(unconditional_conditioning, dict) | |
c_in = dict() | |
for k in c: | |
if isinstance(c[k], list): | |
c_in[k] = [torch.cat([ | |
unconditional_conditioning[k][i], | |
c[k][i]]) for i in range(len(c[k]))] | |
else: | |
c_in[k] = torch.cat([ | |
unconditional_conditioning[k], | |
c[k]]) | |
elif isinstance(c, list): | |
c_in = list() | |
assert isinstance(unconditional_conditioning, list) | |
for i in range(len(c)): | |
c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) | |
else: | |
c_in = torch.cat([unconditional_conditioning, c]) | |
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) # , reference_image_noisy | |
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) | |
return model_output | |
def pred_x_prev_from_eps(self, x, c, t, model_output, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
dynamic_threshold=None): | |
b, *_, device = *x.shape, x.device | |
if self.model.parameterization == "v": | |
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) | |
else: | |
e_t = model_output | |
if score_corrector is not None: | |
assert self.model.parameterization == "eps", 'not implemented' | |
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) | |
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas | |
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev | |
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas | |
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas | |
# select parameters corresponding to the currently considered timestep | |
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) | |
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) | |
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) | |
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) | |
# current prediction for x_0 | |
if self.model.parameterization != "v": | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
else: | |
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) | |
if quantize_denoised: | |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) | |
if dynamic_threshold is not None: | |
raise NotImplementedError() | |
# direction pointing to x_t | |
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t | |
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise | |
return x_prev, pred_x0 | |
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, | |
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): | |
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0] | |
assert t_enc <= num_reference_steps | |
num_steps = t_enc | |
if use_original_steps: | |
alphas_next = self.alphas_cumprod[:num_steps] | |
alphas = self.alphas_cumprod_prev[:num_steps] | |
else: | |
alphas_next = self.ddim_alphas[:num_steps] | |
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) | |
x_next = x0 | |
intermediates = [] | |
inter_steps = [] | |
for i in tqdm(range(num_steps), desc='Encoding Image'): | |
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long) | |
if unconditional_guidance_scale == 1.: | |
noise_pred = self.model.apply_model(x_next, t, c) | |
else: | |
assert unconditional_conditioning is not None | |
e_t_uncond, noise_pred = torch.chunk( | |
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), | |
torch.cat((unconditional_conditioning, c))), 2) | |
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) | |
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next | |
weighted_noise_pred = alphas_next[i].sqrt() * ( | |
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred | |
x_next = xt_weighted + weighted_noise_pred | |
if return_intermediates and i % ( | |
num_steps // return_intermediates) == 0 and i < num_steps - 1: | |
intermediates.append(x_next) | |
inter_steps.append(i) | |
elif return_intermediates and i >= num_steps - 2: | |
intermediates.append(x_next) | |
inter_steps.append(i) | |
if callback: callback(i) | |
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} | |
if return_intermediates: | |
out.update({'intermediates': intermediates}) | |
return x_next, out | |
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): | |
# fast, but does not allow for exact reconstruction | |
# t serves as an index to gather the correct alphas | |
if use_original_steps: | |
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod | |
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod | |
else: | |
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) | |
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas | |
if noise is None: | |
noise = torch.randn_like(x0) | |
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + | |
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) | |
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, | |
use_original_steps=False, callback=None, inpaint=None): | |
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps | |
timesteps = timesteps[:t_start] | |
time_range = np.flip(timesteps) | |
total_steps = timesteps.shape[0] | |
print(f"Running DDIM Sampling with {total_steps} timesteps") | |
iterator = tqdm(time_range, desc='Decoding image', total=total_steps) | |
x_dec = x_latent | |
for i, step in enumerate(iterator): | |
index = total_steps - i - 1 | |
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) | |
model_output = self.p_sample_ddim(x_dec, cond, ts, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, inpaint=inpaint) | |
x_dec, _ = self.pred_x_prev_from_eps(x_dec, cond, ts, model_output, index=index, use_original_steps=use_original_steps) | |
if callback: callback(i) | |
return x_dec | |
class DDIMSampler_ReferenceOnly(object): | |
def __init__(self, model, schedule="linear", **kwargs): | |
super().__init__() | |
self.model = model | |
self.ddpm_num_timesteps = model.num_timesteps | |
self.schedule = schedule | |
def register_buffer(self, name, attr): | |
if type(attr) == torch.Tensor: | |
if attr.device != torch.device("cuda"): | |
attr = attr.to(torch.device("cuda")) | |
setattr(self, name, attr) | |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): | |
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, | |
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) | |
alphas_cumprod = self.model.alphas_cumprod | |
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) | |
self.register_buffer('betas', to_torch(self.model.betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) | |
# ddim sampling parameters | |
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), | |
ddim_timesteps=self.ddim_timesteps, | |
eta=ddim_eta,verbose=verbose) | |
self.register_buffer('ddim_sigmas', ddim_sigmas) | |
self.register_buffer('ddim_alphas', ddim_alphas) | |
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) | |
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) | |
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( | |
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( | |
1 - self.alphas_cumprod / self.alphas_cumprod_prev)) | |
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) | |
def sample(self, | |
S, | |
batch_size, | |
shape, | |
conditioning=None, | |
callback=None, | |
normals_sequence=None, | |
img_callback=None, | |
quantize_x0=False, | |
eta=0., | |
mask=None, | |
x0=None, | |
temperature=1., | |
noise_dropout=0., | |
score_corrector=None, | |
corrector_kwargs=None, | |
verbose=True, | |
x_T=None, | |
log_every_t=100, | |
unconditional_guidance_scale=1., | |
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... | |
dynamic_threshold=None, | |
ucg_schedule=None, | |
inpaint=None, | |
num_overlap=0, | |
**kwargs | |
): | |
if conditioning is not None: | |
if isinstance(conditioning, dict): | |
ctmp = conditioning[list(conditioning.keys())[0]] | |
while isinstance(ctmp, list): ctmp = ctmp[0] | |
cbs = ctmp.shape[0] | |
if cbs != batch_size: | |
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | |
elif isinstance(conditioning, list): | |
for ctmp in conditioning: | |
if ctmp.shape[0] != batch_size: | |
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | |
else: | |
if conditioning.shape[0] != batch_size: | |
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") | |
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) | |
# sampling | |
C, H, W = shape | |
size = (batch_size, C, H, W) | |
print(f'Data shape for DDIM sampling is {C, H, W}') | |
samples, intermediates = self.ddim_sampling(conditioning, size, | |
callback=callback, | |
img_callback=img_callback, | |
quantize_denoised=quantize_x0, | |
mask=mask, x0=x0, | |
ddim_use_original_steps=False, | |
noise_dropout=noise_dropout, | |
temperature=temperature, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
x_T=x_T, | |
log_every_t=log_every_t, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
dynamic_threshold=dynamic_threshold, | |
ucg_schedule=ucg_schedule, | |
inpaint=inpaint, | |
num_overlap=num_overlap | |
) | |
return samples, intermediates | |
def ddim_sampling(self, cond, shape, | |
x_T=None, ddim_use_original_steps=False, | |
callback=None, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, img_callback=None, log_every_t=100, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, | |
ucg_schedule=None,inpaint=None,num_overlap=0): | |
device = self.model.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
if timesteps is None: | |
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps | |
elif timesteps is not None and not ddim_use_original_steps: | |
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 | |
timesteps = self.ddim_timesteps[:subset_end] | |
intermediates = {'x_inter': [img], 'pred_x0': [img]} | |
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) | |
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] | |
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) | |
num_frames = img.shape[0] | |
for i, step in enumerate(iterator): | |
index = total_steps - i - 1 | |
ts = torch.full((b,), step, device=device, dtype=torch.long) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? | |
img = img_orig * mask + (1. - mask) * img | |
if ucg_schedule is not None: | |
assert len(ucg_schedule) == len(time_range) | |
unconditional_guidance_scale = ucg_schedule[i] | |
if num_overlap == 0: | |
model_output = self.p_sample_ddim(img, cond, ts, unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, inpaint=inpaint) | |
else: | |
model_output_all = torch.zeros_like(img) | |
counts = torch.zeros(num_frames).cuda() | |
offset = random.randint(0, num_frames-1) | |
skip = b - num_overlap | |
for start_idx in range(offset, offset+num_frames-num_overlap, skip): | |
indices = torch.arange(start_idx, start_idx + b) % num_frames | |
sel_cond = {} | |
for k, v in cond.items(): | |
if isinstance(v, list) and k != 'more_image_control': | |
sel_cond[k] = [c[indices] for c in v] | |
elif k == 'more_image_control': | |
num_more_refs = len(v) | |
sel_cond[k] = [] | |
for i in range(num_more_refs): | |
sel_cond[k].append([c[indices] for c in v[i]]) | |
else: | |
sel_cond[k] = v | |
sel_uncond = {} | |
for k, v in unconditional_conditioning.items(): | |
if isinstance(v, list) and k != 'more_image_control': | |
sel_uncond[k] = [c[indices] for c in v] | |
elif k == 'more_image_control': | |
num_more_refs = len(v) | |
sel_uncond[k] = [] | |
for i in range(num_more_refs): | |
sel_uncond[k].append([c[indices] for c in v[i]]) | |
else: | |
sel_uncond[k] = v | |
model_output = self.p_sample_ddim(img[indices], sel_cond, ts, unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=sel_uncond, inpaint=inpaint) | |
model_output_all[indices] += model_output | |
counts[indices] += 1 | |
model_output = model_output_all / counts.reshape(-1, 1, 1, 1) | |
outs = self.pred_x_prev_from_eps(img, cond, ts, model_output, index=index, temperature=temperature, | |
noise_dropout=noise_dropout, score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, dynamic_threshold=dynamic_threshold) | |
img, pred_x0 = outs | |
if callback: callback(i) | |
if img_callback: img_callback(pred_x0, i) | |
if index % log_every_t == 0 or index == total_steps - 1: | |
intermediates['x_inter'].append(img) | |
intermediates['pred_x0'].append(pred_x0) | |
return img, intermediates | |
def p_sample_ddim(self, x, c, t, unconditional_guidance_scale=1., unconditional_conditioning=None, inpaint=None): | |
if inpaint is None: | |
x_In = x | |
else: | |
x_In = torch.cat([x,inpaint],dim=1) | |
if 'image_control' in c and c['image_control'] is not None: | |
cond_image_start = torch.cat(c['image_control'], 1) | |
if c['wonoise']: | |
reference_image_noisy = cond_image_start | |
else: | |
reference_image_noisy = self.model.q_sample(cond_image_start,t) | |
more_reference_image_noisy = [] | |
if 'more_image_control' in c and c['more_image_control'] is not None: | |
num_additional_ref_imgs = len(c['more_image_control']) | |
for i in range(num_additional_ref_imgs): | |
m_ref_img_noisy = torch.cat(c['more_image_control'][i], 1) | |
if not c['wonoise']: | |
m_ref_img_noisy = self.model.q_sample(m_ref_img_noisy, t) | |
more_reference_image_noisy.append(m_ref_img_noisy) | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: | |
model_output = self.model.apply_model(x_In, t, c) | |
else: | |
if 'image_control' in unconditional_conditioning and unconditional_conditioning['image_control'] is not None: | |
x_in = torch.cat([x_In] * 2) | |
t_in = torch.cat([t] * 2) | |
reference_image_noisy_in = torch.cat([reference_image_noisy] * 2) | |
more_reference_image_noisy = [torch.cat([m_ref_img] * 2) for m_ref_img in more_reference_image_noisy] | |
if isinstance(c, dict): | |
assert isinstance(unconditional_conditioning, dict) | |
c_in = dict() | |
for k in c: | |
if isinstance(c[k], list): | |
c_in[k] = [torch.cat([ | |
unconditional_conditioning[k][i], | |
c[k][i]]) for i in range(len(c[k]))] | |
else: | |
try: | |
c_in[k] = torch.cat([ | |
unconditional_conditioning[k], | |
c[k]]) | |
except: | |
c_in[k] = unconditional_conditioning[k] | |
elif isinstance(c, list): | |
c_in = list() | |
assert isinstance(unconditional_conditioning, list) | |
for i in range(len(c)): | |
c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) | |
else: | |
c_in = torch.cat([unconditional_conditioning, c]) | |
# pdb.set_trace() | |
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in, reference_image_noisy_in, more_reference_image_noisy = more_reference_image_noisy).chunk(2) # , reference_image_noisy | |
else: | |
x_in = x_In | |
t_in = t | |
c_in = c | |
reference_image_noisy_in = reference_image_noisy | |
model_t = self.model.apply_model(x_in, t_in, c_in, reference_image_noisy_in, more_reference_image_noisy = more_reference_image_noisy) | |
model_uncond = self.model.apply_model(x_in, t_in, unconditional_conditioning, None,uc=True) | |
# pdb.set_trace() | |
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) | |
return model_output | |
def pred_x_prev_from_eps(self, x, c, t, model_output, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
dynamic_threshold=None): | |
b, *_, device = *x.shape, x.device | |
if self.model.parameterization == "v": | |
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) | |
else: | |
e_t = model_output | |
if score_corrector is not None: | |
assert self.model.parameterization == "eps", 'not implemented' | |
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) | |
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas | |
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev | |
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas | |
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas | |
# select parameters corresponding to the currently considered timestep | |
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) | |
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) | |
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) | |
# print ('sigma_t: {}'.format(sigma_t[0, 0, 0, 0])) | |
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) | |
# current prediction for x_0 | |
if self.model.parameterization != "v": | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
else: | |
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) | |
if quantize_denoised: | |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) | |
if dynamic_threshold is not None: | |
raise NotImplementedError() | |
# direction pointing to x_t | |
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t | |
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise | |
return x_prev, pred_x0 | |
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, | |
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): | |
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0] | |
assert t_enc <= num_reference_steps | |
num_steps = t_enc | |
if use_original_steps: | |
alphas_next = self.alphas_cumprod[:num_steps] | |
alphas = self.alphas_cumprod_prev[:num_steps] | |
else: | |
alphas_next = self.ddim_alphas[:num_steps] | |
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) | |
x_next = x0 | |
intermediates = [] | |
inter_steps = [] | |
for i in tqdm(range(num_steps), desc='Encoding Image'): | |
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long) | |
if unconditional_guidance_scale == 1.: | |
noise_pred = self.model.apply_model(x_next, t, c) | |
else: | |
assert unconditional_conditioning is not None | |
e_t_uncond, noise_pred = torch.chunk( | |
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), | |
torch.cat((unconditional_conditioning, c))), 2) | |
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) | |
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next | |
weighted_noise_pred = alphas_next[i].sqrt() * ( | |
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred | |
x_next = xt_weighted + weighted_noise_pred | |
if return_intermediates and i % ( | |
num_steps // return_intermediates) == 0 and i < num_steps - 1: | |
intermediates.append(x_next) | |
inter_steps.append(i) | |
elif return_intermediates and i >= num_steps - 2: | |
intermediates.append(x_next) | |
inter_steps.append(i) | |
if callback: callback(i) | |
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} | |
if return_intermediates: | |
out.update({'intermediates': intermediates}) | |
return x_next, out | |
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): | |
# fast, but does not allow for exact reconstruction | |
# t serves as an index to gather the correct alphas | |
if use_original_steps: | |
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod | |
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod | |
else: | |
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) | |
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas | |
if noise is None: | |
noise = torch.randn_like(x0) | |
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + | |
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) | |
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, | |
use_original_steps=False, callback=None, inpaint=None): | |
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps | |
timesteps = timesteps[:t_start] | |
time_range = np.flip(timesteps) | |
total_steps = timesteps.shape[0] | |
print(f"Running DDIM Sampling with {total_steps} timesteps") | |
iterator = tqdm(time_range, desc='Decoding image', total=total_steps) | |
x_dec = x_latent | |
for i, step in enumerate(iterator): | |
index = total_steps - i - 1 | |
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) | |
model_output = self.p_sample_ddim(x_dec, cond, ts, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, inpaint=inpaint) | |
x_dec, _ = self.pred_x_prev_from_eps(x_dec, cond, ts, model_output, index) | |
if callback: callback(i) | |
return x_dec |