<!-- # magic-edit.github.io --> <p align="center"> <h2 align="center">X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention</h2> <p align="center"> <a href="https://scholar.google.com/citations?user=FV0eXhQAAAAJ&hl=en">You Xie</a>, <a href="https://hongyixu37.github.io/homepage/">Hongyi Xu</a>, <a href="https://guoxiansong.github.io/homepage/index.html">Guoxian Song</a>, <a href="https://chaowang.info/">Chao Wang</a>, <a href="https://seasonsh.github.io/">Yichun Shi</a>, <a href="http://linjieluo.com/">Linjie Luo</a> <br> <b> ByteDance Inc. </b> <br> <br> <a href="https://arxiv.org/abs/2403.15931"><img src='https://img.shields.io/badge/arXiv-X--Portrait-red' alt='Paper PDF'></a> <a href='https://byteaigc.github.io/x-portrait/'><img src='https://img.shields.io/badge/Project_Page-X--Portrait-green' alt='Project Page'></a> <a href='https://youtu.be/VGxt5XghRdw'> <img src='https://img.shields.io/badge/YouTube-X--Portrait-rgb(255, 0, 0)' alt='Youtube'></a> <br> </p> <table align="center"> <tr> <td> <img src="assets/teaser/teaser.png"> </td> </tr> </table> This repository contains the video generation code of SIGGRAPH 2024 paper [X-Portrait](https://arxiv.org/pdf/2403.15931). ## Installation Note: Python 3.9 and Cuda 11.8 are required. ```shell bash env_install.sh ``` ## Model Please download pre-trained model from [here](https://drive.google.com/drive/folders/1Bq0n-w1VT5l99CoaVg02hFpqE5eGLo9O?usp=sharing), and save it under "checkpoint/" ## Testing ```shell bash scripts/test_xportrait.sh ``` parameters: **model_config**: config file of the corresponding model **output_dir**: output path for generated video **source_image**: path of source image **driving_video**: path of driving video **best_frame**: specify the frame index in the driving video where the head pose best matches the source image (note: precision of best_frame index might affect the final quality) **out_frames**: number of generation frames **num_mix**: number of overlapping frames when applying prompt travelling during inference **ddim_steps**: number of inference steps (e.g., 30 steps for ddim) ## Performance Boost **efficiency**: Our model is compatible with LCM LoRA (https://huggingface.co/latent-consistency/lcm-lora-sdv1-5), which helps reduce the number of inference steps. **expressiveness**: Expressiveness of the results could be boosted if results of other face reenactment approaches, e.g., face vid2vid, could be provided via parameter "--initial_facevid2vid_results". ## 🎓 Citation If you find this codebase useful for your research, please use the following entry. ```BibTeX @inproceedings{xie2024x, title={X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention}, author={Xie, You and Xu, Hongyi and Song, Guoxian and Wang, Chao and Shi, Yichun and Luo, Linjie}, journal={arXiv preprint arXiv:2403.15931}, year={2024} } ```