Update app.py
Browse files
app.py
CHANGED
@@ -204,13 +204,13 @@ with gr.Blocks() as demo:
|
|
204 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
205 |
num_tokens_global = num_tokens
|
206 |
embedding_learning_rate = gr.Textbox(value="0.00005", label="Embedding optimization: Learning rate", interactive= True )
|
207 |
-
max_emb_train_steps = gr.Number(value="
|
208 |
|
209 |
diffusion_model_learning_rate = gr.Textbox(value="0.00002", label="UNet Optimization: Learning rate", interactive= True )
|
210 |
-
max_diffusion_train_steps = gr.Number(value="
|
211 |
|
212 |
-
train_batch_size = gr.Number(value="
|
213 |
-
gradient_accumulation_steps=gr.Number(value="
|
214 |
|
215 |
add_button = gr.Button("Run optimization")
|
216 |
def run_optimization_wrapper (
|
|
|
204 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
205 |
num_tokens_global = num_tokens
|
206 |
embedding_learning_rate = gr.Textbox(value="0.00005", label="Embedding optimization: Learning rate", interactive= True )
|
207 |
+
max_emb_train_steps = gr.Number(value="15", label="embedding optimization: Training steps", interactive= True )
|
208 |
|
209 |
diffusion_model_learning_rate = gr.Textbox(value="0.00002", label="UNet Optimization: Learning rate", interactive= True )
|
210 |
+
max_diffusion_train_steps = gr.Number(value="10", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
211 |
|
212 |
+
train_batch_size = gr.Number(value="32", label="Batch size", interactive= True )
|
213 |
+
gradient_accumulation_steps=gr.Number(value="2", label="Gradient accumulation", interactive= True )
|
214 |
|
215 |
add_button = gr.Button("Run optimization")
|
216 |
def run_optimization_wrapper (
|