second
Browse files- app.py +31 -13
- pipeline_dedit_sdxl.py +875 -0
app.py
CHANGED
|
@@ -296,19 +296,37 @@ with gr.Blocks() as demo:
|
|
| 296 |
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
| 297 |
|
| 298 |
add_button = gr.Button("Run optimization")
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
outputs = []
|
| 313 |
)
|
| 314 |
|
|
|
|
| 296 |
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
| 297 |
|
| 298 |
add_button = gr.Button("Run optimization")
|
| 299 |
+
def run_optimization_wrapper (
|
| 300 |
+
num_tokens,
|
| 301 |
+
embedding_learning_rate ,
|
| 302 |
+
max_emb_train_steps ,
|
| 303 |
+
diffusion_model_learning_rate ,
|
| 304 |
+
max_diffusion_train_steps,
|
| 305 |
+
train_batch_size,
|
| 306 |
+
gradient_accumulation_steps
|
| 307 |
+
):
|
| 308 |
+
run_optimization = partial(
|
| 309 |
+
run_main,
|
| 310 |
+
num_tokens=int(num_tokens),
|
| 311 |
+
embedding_learning_rate = float(embedding_learning_rate),
|
| 312 |
+
max_emb_train_steps = int(max_emb_train_steps),
|
| 313 |
+
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
|
| 314 |
+
max_diffusion_train_steps = int(max_diffusion_train_steps),
|
| 315 |
+
train_batch_size=int(train_batch_size),
|
| 316 |
+
gradient_accumulation_steps=int(gradient_accumulation_steps)
|
| 317 |
+
)
|
| 318 |
+
run_optimization()
|
| 319 |
+
|
| 320 |
+
add_button.click(run_optimization_wrapper,
|
| 321 |
+
inputs = [
|
| 322 |
+
num_tokens,
|
| 323 |
+
embedding_learning_rate ,
|
| 324 |
+
max_emb_train_steps ,
|
| 325 |
+
diffusion_model_learning_rate ,
|
| 326 |
+
max_diffusion_train_steps,
|
| 327 |
+
train_batch_size,
|
| 328 |
+
gradient_accumulation_steps
|
| 329 |
+
],
|
| 330 |
outputs = []
|
| 331 |
)
|
| 332 |
|
pipeline_dedit_sdxl.py
ADDED
|
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from utils import import_model_class_from_model_name_or_path
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
+
from diffusers import (
|
| 5 |
+
AutoencoderKL,
|
| 6 |
+
DDPMScheduler,
|
| 7 |
+
StableDiffusionXLPipeline,
|
| 8 |
+
UNet2DConditionModel,
|
| 9 |
+
)
|
| 10 |
+
from accelerate import Accelerator
|
| 11 |
+
from tqdm.auto import tqdm
|
| 12 |
+
from utils import sdxl_prepare_input_decom, save_images
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
import itertools
|
| 15 |
+
from peft import LoraConfig
|
| 16 |
+
from controller import GroupedCAController, register_attention_disentangled_control, DummyController
|
| 17 |
+
from utils import image2latent, latent2image
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
from utils_mask import check_mask_overlap_torch
|
| 20 |
+
|
| 21 |
+
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
| 22 |
+
max_length = 40
|
| 23 |
+
class DEditSDXLPipeline:
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
mask_list,
|
| 27 |
+
mask_label_list,
|
| 28 |
+
mask_list_2 = None,
|
| 29 |
+
mask_label_list_2 = None,
|
| 30 |
+
resolution = 1024,
|
| 31 |
+
num_tokens = 1
|
| 32 |
+
):
|
| 33 |
+
super().__init__()
|
| 34 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 35 |
+
self.model_id = model_id
|
| 36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", use_fast=False)
|
| 37 |
+
self.tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2", use_fast=False)
|
| 38 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(model_id, subfolder = "text_encoder")
|
| 39 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(model_id, subfolder="text_encoder_2")
|
| 40 |
+
self.text_encoder = text_encoder_cls_one.from_pretrained(model_id, subfolder="text_encoder" ).to(device)
|
| 41 |
+
self.text_encoder_2 = text_encoder_cls_two.from_pretrained(model_id, subfolder="text_encoder_2").to(device)
|
| 42 |
+
self.unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet" )
|
| 43 |
+
self.unet.ca_dim = 2048
|
| 44 |
+
self.vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix")
|
| 45 |
+
self.scheduler = DDPMScheduler.from_pretrained(model_id , subfolder="scheduler")
|
| 46 |
+
|
| 47 |
+
self.mixed_precision = "fp16"
|
| 48 |
+
self.resolution = resolution
|
| 49 |
+
self.num_tokens = num_tokens
|
| 50 |
+
|
| 51 |
+
self.mask_list = mask_list
|
| 52 |
+
self.mask_label_list = mask_label_list
|
| 53 |
+
notation_token_list = [phrase.split(" ")[-1] for phrase in mask_label_list]
|
| 54 |
+
placeholder_token_list = ["#"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list)]
|
| 55 |
+
self.set_string_list, placeholder_token_ids = self.add_tokens(placeholder_token_list)
|
| 56 |
+
self.min_added_id = min(placeholder_token_ids)
|
| 57 |
+
self.max_added_id = max(placeholder_token_ids)
|
| 58 |
+
|
| 59 |
+
if mask_list_2 is not None:
|
| 60 |
+
self.mask_list_2 = mask_list_2
|
| 61 |
+
self.mask_label_list_2 = mask_label_list_2
|
| 62 |
+
notation_token_list_2 = [phrase.split(" ")[-1] for phrase in mask_label_list_2]
|
| 63 |
+
|
| 64 |
+
placeholder_token_list_2 = ["$"+word+"{}".format(widx) for widx, word in enumerate(notation_token_list_2)]
|
| 65 |
+
self.set_string_list_2, placeholder_token_ids_2 = self.add_tokens(placeholder_token_list_2)
|
| 66 |
+
self.max_added_id = max(placeholder_token_ids_2)
|
| 67 |
+
|
| 68 |
+
def add_tokens_text_encoder_random_init(self, placeholder_token, num_tokens=1):
|
| 69 |
+
# Add the placeholder token in tokenizer
|
| 70 |
+
placeholder_tokens = [placeholder_token]
|
| 71 |
+
# add dummy tokens for multi-vector
|
| 72 |
+
additional_tokens = []
|
| 73 |
+
for i in range(1, num_tokens):
|
| 74 |
+
additional_tokens.append(f"{placeholder_token}_{i}")
|
| 75 |
+
placeholder_tokens += additional_tokens
|
| 76 |
+
num_added_tokens = self.tokenizer.add_tokens(placeholder_tokens) # 49408
|
| 77 |
+
num_added_tokens = self.tokenizer_2.add_tokens(placeholder_tokens) # 49408
|
| 78 |
+
|
| 79 |
+
if num_added_tokens != num_tokens:
|
| 80 |
+
raise ValueError(
|
| 81 |
+
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
|
| 82 |
+
" `placeholder_token` that is not already in the tokenizer."
|
| 83 |
+
)
|
| 84 |
+
placeholder_token_ids = self.tokenizer.convert_tokens_to_ids(placeholder_tokens)
|
| 85 |
+
placeholder_token_ids_2 = self.tokenizer_2.convert_tokens_to_ids(placeholder_tokens)
|
| 86 |
+
assert placeholder_token_ids == placeholder_token_ids_2, "Two text encoders are expected to have same vocabs"
|
| 87 |
+
|
| 88 |
+
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
| 89 |
+
token_embeds = self.text_encoder.get_input_embeddings().weight.data
|
| 90 |
+
std, mean = torch.std_mean(token_embeds)
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
for token_id in placeholder_token_ids:
|
| 93 |
+
token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean
|
| 94 |
+
|
| 95 |
+
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer))
|
| 96 |
+
token_embeds = self.text_encoder_2.get_input_embeddings().weight.data
|
| 97 |
+
std, mean = torch.std_mean(token_embeds)
|
| 98 |
+
with torch.no_grad():
|
| 99 |
+
for token_id in placeholder_token_ids:
|
| 100 |
+
token_embeds[token_id] = torch.randn_like(token_embeds[token_id])*std + mean
|
| 101 |
+
|
| 102 |
+
set_string = " ".join(self.tokenizer.convert_ids_to_tokens(placeholder_token_ids))
|
| 103 |
+
|
| 104 |
+
return set_string, placeholder_token_ids
|
| 105 |
+
|
| 106 |
+
def add_tokens(self, placeholder_token_list):
|
| 107 |
+
set_string_list = []
|
| 108 |
+
placeholder_token_ids_list = []
|
| 109 |
+
for str_idx in range(len(placeholder_token_list)):
|
| 110 |
+
placeholder_token = placeholder_token_list[str_idx]
|
| 111 |
+
set_string, placeholder_token_ids = self.add_tokens_text_encoder_random_init(placeholder_token, num_tokens=self.num_tokens)
|
| 112 |
+
set_string_list.append(set_string)
|
| 113 |
+
placeholder_token_ids_list.append(placeholder_token_ids)
|
| 114 |
+
placeholder_token_ids = list(itertools.chain(*placeholder_token_ids_list))
|
| 115 |
+
return set_string_list, placeholder_token_ids
|
| 116 |
+
|
| 117 |
+
def train_emb(
|
| 118 |
+
self,
|
| 119 |
+
image_gt,
|
| 120 |
+
set_string_list,
|
| 121 |
+
gradient_accumulation_steps = 5,
|
| 122 |
+
embedding_learning_rate = 1e-4,
|
| 123 |
+
max_emb_train_steps = 100,
|
| 124 |
+
train_batch_size = 1,
|
| 125 |
+
train_full_lora = False
|
| 126 |
+
):
|
| 127 |
+
decom_controller = GroupedCAController(mask_list = self.mask_list)
|
| 128 |
+
register_attention_disentangled_control(self.unet, decom_controller)
|
| 129 |
+
|
| 130 |
+
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
|
| 131 |
+
self.vae.requires_grad_(False)
|
| 132 |
+
self.unet.requires_grad_(False)
|
| 133 |
+
|
| 134 |
+
self.text_encoder.requires_grad_(True)
|
| 135 |
+
self.text_encoder_2.requires_grad_(True)
|
| 136 |
+
|
| 137 |
+
self.text_encoder.text_model.encoder.requires_grad_(False)
|
| 138 |
+
self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
| 139 |
+
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
| 140 |
+
|
| 141 |
+
self.text_encoder_2.text_model.encoder.requires_grad_(False)
|
| 142 |
+
self.text_encoder_2.text_model.final_layer_norm.requires_grad_(False)
|
| 143 |
+
self.text_encoder_2.text_model.embeddings.position_embedding.requires_grad_(False)
|
| 144 |
+
|
| 145 |
+
weight_dtype = torch.float32
|
| 146 |
+
if accelerator.mixed_precision == "fp16":
|
| 147 |
+
weight_dtype = torch.float16
|
| 148 |
+
elif accelerator.mixed_precision == "bf16":
|
| 149 |
+
weight_dtype = torch.bfloat16
|
| 150 |
+
|
| 151 |
+
self.unet.to(device, dtype=weight_dtype)
|
| 152 |
+
self.vae.to(device, dtype=weight_dtype)
|
| 153 |
+
|
| 154 |
+
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]
|
| 155 |
+
trainable_embmat_list_2 = [param for param in self.text_encoder_2.get_input_embeddings().parameters()]
|
| 156 |
+
|
| 157 |
+
optimizer = torch.optim.AdamW(trainable_embmat_list_1 + trainable_embmat_list_2, lr=embedding_learning_rate)
|
| 158 |
+
|
| 159 |
+
self.text_encoder, self.text_encoder_2, optimizer = accelerator.prepare(self.text_encoder, self.text_encoder_2, optimizer)
|
| 160 |
+
|
| 161 |
+
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder) .get_input_embeddings().weight.data.clone()
|
| 162 |
+
orig_embeds_params_2 = accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight.data.clone()
|
| 163 |
+
|
| 164 |
+
self.text_encoder.train()
|
| 165 |
+
self.text_encoder_2.train()
|
| 166 |
+
|
| 167 |
+
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
|
| 168 |
+
|
| 169 |
+
if accelerator.is_main_process:
|
| 170 |
+
accelerator.init_trackers("DEdit EmbSteps", config={
|
| 171 |
+
"embedding_learning_rate": embedding_learning_rate,
|
| 172 |
+
"text_embedding_optimization_steps": effective_emb_train_steps,
|
| 173 |
+
})
|
| 174 |
+
global_step = 0
|
| 175 |
+
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler")
|
| 176 |
+
progress_bar = tqdm(range(0, effective_emb_train_steps), initial = global_step, desc="EmbSteps")
|
| 177 |
+
latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype)
|
| 178 |
+
latents0 = latents0.repeat(train_batch_size, 1, 1, 1)
|
| 179 |
+
|
| 180 |
+
for _ in range(max_emb_train_steps):
|
| 181 |
+
with accelerator.accumulate(self.text_encoder, self.text_encoder_2):
|
| 182 |
+
latents = latents0.clone().detach()
|
| 183 |
+
noise = torch.randn_like(latents)
|
| 184 |
+
bsz = latents.shape[0]
|
| 185 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
| 186 |
+
timesteps = timesteps.long()
|
| 187 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
| 188 |
+
encoder_hidden_states_list, add_text_embeds, add_time_ids = sdxl_prepare_input_decom(
|
| 189 |
+
set_string_list,
|
| 190 |
+
self.tokenizer,
|
| 191 |
+
self.tokenizer_2,
|
| 192 |
+
self.text_encoder,
|
| 193 |
+
self.text_encoder_2,
|
| 194 |
+
length = max_length,
|
| 195 |
+
bsz = train_batch_size,
|
| 196 |
+
weight_dtype = weight_dtype
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
model_pred = self.unet(
|
| 200 |
+
noisy_latents,
|
| 201 |
+
timesteps,
|
| 202 |
+
encoder_hidden_states = encoder_hidden_states_list,
|
| 203 |
+
cross_attention_kwargs = None,
|
| 204 |
+
added_cond_kwargs={"text_embeds": add_text_embeds, "time_ids": add_time_ids},
|
| 205 |
+
return_dict=False
|
| 206 |
+
)[0]
|
| 207 |
+
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
|
| 208 |
+
accelerator.backward(loss)
|
| 209 |
+
optimizer.step()
|
| 210 |
+
optimizer.zero_grad()
|
| 211 |
+
|
| 212 |
+
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
|
| 213 |
+
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
| 214 |
+
with torch.no_grad():
|
| 215 |
+
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
|
| 216 |
+
index_no_updates] = orig_embeds_params_1[index_no_updates]
|
| 217 |
+
|
| 218 |
+
index_no_updates = torch.ones((len(self.tokenizer_2),), dtype=torch.bool)
|
| 219 |
+
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
| 220 |
+
with torch.no_grad():
|
| 221 |
+
accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight[
|
| 222 |
+
index_no_updates] = orig_embeds_params_2[index_no_updates]
|
| 223 |
+
|
| 224 |
+
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
|
| 225 |
+
progress_bar.set_postfix(**logs)
|
| 226 |
+
accelerator.log(logs, step=global_step)
|
| 227 |
+
if accelerator.sync_gradients:
|
| 228 |
+
progress_bar.update(1)
|
| 229 |
+
global_step += 1
|
| 230 |
+
|
| 231 |
+
if global_step >= max_emb_train_steps:
|
| 232 |
+
break
|
| 233 |
+
accelerator.wait_for_everyone()
|
| 234 |
+
accelerator.end_training()
|
| 235 |
+
self.text_encoder = accelerator.unwrap_model(self.text_encoder).to(dtype = weight_dtype)
|
| 236 |
+
self.text_encoder_2 = accelerator.unwrap_model(self.text_encoder_2).to(dtype = weight_dtype)
|
| 237 |
+
|
| 238 |
+
def train_model(
|
| 239 |
+
self,
|
| 240 |
+
image_gt,
|
| 241 |
+
set_string_list,
|
| 242 |
+
gradient_accumulation_steps = 5,
|
| 243 |
+
max_diffusion_train_steps = 100,
|
| 244 |
+
diffusion_model_learning_rate = 1e-5,
|
| 245 |
+
train_batch_size = 1,
|
| 246 |
+
train_full_lora = False,
|
| 247 |
+
lora_rank = 4,
|
| 248 |
+
lora_alpha = 4
|
| 249 |
+
):
|
| 250 |
+
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
|
| 251 |
+
self.unet.ca_dim = 2048
|
| 252 |
+
decom_controller = GroupedCAController(mask_list = self.mask_list)
|
| 253 |
+
register_attention_disentangled_control(self.unet, decom_controller)
|
| 254 |
+
|
| 255 |
+
mixed_precision = "fp16"
|
| 256 |
+
accelerator = Accelerator(gradient_accumulation_steps = gradient_accumulation_steps, mixed_precision = mixed_precision)
|
| 257 |
+
|
| 258 |
+
weight_dtype = torch.float32
|
| 259 |
+
if accelerator.mixed_precision == "fp16":
|
| 260 |
+
weight_dtype = torch.float16
|
| 261 |
+
elif accelerator.mixed_precision == "bf16":
|
| 262 |
+
weight_dtype = torch.bfloat16
|
| 263 |
+
|
| 264 |
+
self.vae.requires_grad_(False)
|
| 265 |
+
self.vae.to(device, dtype=weight_dtype)
|
| 266 |
+
|
| 267 |
+
self.unet.requires_grad_(False)
|
| 268 |
+
self.unet.train()
|
| 269 |
+
|
| 270 |
+
self.text_encoder.requires_grad_(False)
|
| 271 |
+
self.text_encoder_2.requires_grad_(False)
|
| 272 |
+
|
| 273 |
+
if not train_full_lora:
|
| 274 |
+
trainable_params_list = []
|
| 275 |
+
for _, module in self.unet.named_modules():
|
| 276 |
+
module_name = type(module).__name__
|
| 277 |
+
if module_name == "Attention":
|
| 278 |
+
if module.to_k.in_features == 2048: # this is cross attention:
|
| 279 |
+
module.to_k.weight.requires_grad = True
|
| 280 |
+
trainable_params_list.append(module.to_k.weight)
|
| 281 |
+
if module.to_k.bias is not None:
|
| 282 |
+
module.to_k.bias.requires_grad = True
|
| 283 |
+
trainable_params_list.append(module.to_k.bias)
|
| 284 |
+
module.to_v.weight.requires_grad = True
|
| 285 |
+
trainable_params_list.append(module.to_v.weight)
|
| 286 |
+
if module.to_v.bias is not None:
|
| 287 |
+
module.to_v.bias.requires_grad = True
|
| 288 |
+
trainable_params_list.append(module.to_v.bias)
|
| 289 |
+
module.to_q.weight.requires_grad = True
|
| 290 |
+
trainable_params_list.append(module.to_q.weight)
|
| 291 |
+
if module.to_q.bias is not None:
|
| 292 |
+
module.to_q.bias.requires_grad = True
|
| 293 |
+
trainable_params_list.append(module.to_q.bias)
|
| 294 |
+
else:
|
| 295 |
+
unet_lora_config = LoraConfig(
|
| 296 |
+
r=lora_rank,
|
| 297 |
+
lora_alpha=lora_alpha,
|
| 298 |
+
init_lora_weights="gaussian",
|
| 299 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
| 300 |
+
)
|
| 301 |
+
self.unet.add_adapter(unet_lora_config)
|
| 302 |
+
print("training full parameters using lora!")
|
| 303 |
+
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
|
| 304 |
+
|
| 305 |
+
self.text_encoder.to(device, dtype=weight_dtype)
|
| 306 |
+
self.text_encoder_2.to(device, dtype=weight_dtype)
|
| 307 |
+
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)
|
| 308 |
+
self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
|
| 309 |
+
psum2 = sum(p.numel() for p in trainable_params_list)
|
| 310 |
+
|
| 311 |
+
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
|
| 312 |
+
if accelerator.is_main_process:
|
| 313 |
+
accelerator.init_trackers("textual_inversion", config={
|
| 314 |
+
"diffusion_model_learning_rate": diffusion_model_learning_rate,
|
| 315 |
+
"diffusion_model_optimization_steps": effective_diffusion_train_steps,
|
| 316 |
+
})
|
| 317 |
+
|
| 318 |
+
global_step = 0
|
| 319 |
+
progress_bar = tqdm( range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")
|
| 320 |
+
|
| 321 |
+
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0" , subfolder="scheduler")
|
| 322 |
+
|
| 323 |
+
latents0 = image2latent(image_gt, vae = self.vae, dtype=weight_dtype)
|
| 324 |
+
latents0 = latents0.repeat(train_batch_size, 1, 1, 1)
|
| 325 |
+
|
| 326 |
+
with torch.no_grad():
|
| 327 |
+
encoder_hidden_states_list, add_text_embeds, add_time_ids = sdxl_prepare_input_decom(
|
| 328 |
+
set_string_list,
|
| 329 |
+
self.tokenizer,
|
| 330 |
+
self.tokenizer_2,
|
| 331 |
+
self.text_encoder,
|
| 332 |
+
self.text_encoder_2,
|
| 333 |
+
length = max_length,
|
| 334 |
+
bsz = train_batch_size,
|
| 335 |
+
weight_dtype = weight_dtype
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
for _ in range(max_diffusion_train_steps):
|
| 339 |
+
with accelerator.accumulate(self.unet):
|
| 340 |
+
latents = latents0.clone().detach()
|
| 341 |
+
noise = torch.randn_like(latents)
|
| 342 |
+
bsz = latents.shape[0]
|
| 343 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
| 344 |
+
timesteps = timesteps.long()
|
| 345 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
| 346 |
+
model_pred = self.unet(
|
| 347 |
+
noisy_latents,
|
| 348 |
+
timesteps,
|
| 349 |
+
encoder_hidden_states=encoder_hidden_states_list,
|
| 350 |
+
cross_attention_kwargs=None, return_dict=False,
|
| 351 |
+
added_cond_kwargs={"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 352 |
+
)[0]
|
| 353 |
+
loss = F.mse_loss(model_pred.float(), noise.float(), reduction="mean")
|
| 354 |
+
accelerator.backward(loss)
|
| 355 |
+
optimizer.step()
|
| 356 |
+
optimizer.zero_grad()
|
| 357 |
+
|
| 358 |
+
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
|
| 359 |
+
progress_bar.set_postfix(**logs)
|
| 360 |
+
accelerator.log(logs, step=global_step)
|
| 361 |
+
if accelerator.sync_gradients:
|
| 362 |
+
progress_bar.update(1)
|
| 363 |
+
global_step += 1
|
| 364 |
+
if global_step >=max_diffusion_train_steps:
|
| 365 |
+
break
|
| 366 |
+
accelerator.wait_for_everyone()
|
| 367 |
+
accelerator.end_training()
|
| 368 |
+
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)
|
| 369 |
+
|
| 370 |
+
def train_emb_2imgs(
|
| 371 |
+
self,
|
| 372 |
+
image_gt_1,
|
| 373 |
+
image_gt_2,
|
| 374 |
+
set_string_list_1,
|
| 375 |
+
set_string_list_2,
|
| 376 |
+
gradient_accumulation_steps = 5,
|
| 377 |
+
embedding_learning_rate = 1e-4,
|
| 378 |
+
max_emb_train_steps = 100,
|
| 379 |
+
train_batch_size = 1,
|
| 380 |
+
train_full_lora = False
|
| 381 |
+
):
|
| 382 |
+
decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
|
| 383 |
+
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
|
| 384 |
+
accelerator = Accelerator(mixed_precision=self.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps)
|
| 385 |
+
self.vae.requires_grad_(False)
|
| 386 |
+
self.unet.requires_grad_(False)
|
| 387 |
+
|
| 388 |
+
self.text_encoder.requires_grad_(True)
|
| 389 |
+
self.text_encoder_2.requires_grad_(True)
|
| 390 |
+
|
| 391 |
+
self.text_encoder.text_model.encoder.requires_grad_(False)
|
| 392 |
+
self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
|
| 393 |
+
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
|
| 394 |
+
|
| 395 |
+
self.text_encoder_2.text_model.encoder.requires_grad_(False)
|
| 396 |
+
self.text_encoder_2.text_model.final_layer_norm.requires_grad_(False)
|
| 397 |
+
self.text_encoder_2.text_model.embeddings.position_embedding.requires_grad_(False)
|
| 398 |
+
|
| 399 |
+
weight_dtype = torch.float32
|
| 400 |
+
if accelerator.mixed_precision == "fp16":
|
| 401 |
+
weight_dtype = torch.float16
|
| 402 |
+
elif accelerator.mixed_precision == "bf16":
|
| 403 |
+
weight_dtype = torch.bfloat16
|
| 404 |
+
|
| 405 |
+
self.unet.to(device, dtype=weight_dtype)
|
| 406 |
+
self.vae.to(device, dtype=weight_dtype)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
trainable_embmat_list_1 = [param for param in self.text_encoder.get_input_embeddings().parameters()]
|
| 410 |
+
trainable_embmat_list_2 = [param for param in self.text_encoder_2.get_input_embeddings().parameters()]
|
| 411 |
+
|
| 412 |
+
optimizer = torch.optim.AdamW(trainable_embmat_list_1 + trainable_embmat_list_2, lr=embedding_learning_rate)
|
| 413 |
+
self.text_encoder, self.text_encoder_2, optimizer= accelerator.prepare(self.text_encoder, self.text_encoder_2, optimizer) ###
|
| 414 |
+
orig_embeds_params_1 = accelerator.unwrap_model(self.text_encoder) .get_input_embeddings().weight.data.clone()
|
| 415 |
+
orig_embeds_params_2 = accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight.data.clone()
|
| 416 |
+
|
| 417 |
+
self.text_encoder.train()
|
| 418 |
+
self.text_encoder_2.train()
|
| 419 |
+
|
| 420 |
+
effective_emb_train_steps = max_emb_train_steps//gradient_accumulation_steps
|
| 421 |
+
|
| 422 |
+
if accelerator.is_main_process:
|
| 423 |
+
accelerator.init_trackers("EmbFt", config={
|
| 424 |
+
"embedding_learning_rate": embedding_learning_rate,
|
| 425 |
+
"text_embedding_optimization_steps": effective_emb_train_steps,
|
| 426 |
+
})
|
| 427 |
+
|
| 428 |
+
global_step = 0
|
| 429 |
+
|
| 430 |
+
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id , subfolder="scheduler")
|
| 431 |
+
progress_bar = tqdm(range(0, effective_emb_train_steps),initial=global_step,desc="EmbSteps")
|
| 432 |
+
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
|
| 433 |
+
latents0_1 = latents0_1.repeat(train_batch_size,1,1,1)
|
| 434 |
+
|
| 435 |
+
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
|
| 436 |
+
latents0_2 = latents0_2.repeat(train_batch_size,1,1,1)
|
| 437 |
+
|
| 438 |
+
for step in range(max_emb_train_steps):
|
| 439 |
+
with accelerator.accumulate(self.text_encoder, self.text_encoder_2):
|
| 440 |
+
latents_1 = latents0_1.clone().detach()
|
| 441 |
+
noise_1 = torch.randn_like(latents_1)
|
| 442 |
+
|
| 443 |
+
latents_2 = latents0_2.clone().detach()
|
| 444 |
+
noise_2 = torch.randn_like(latents_2)
|
| 445 |
+
|
| 446 |
+
bsz = latents_1.shape[0]
|
| 447 |
+
|
| 448 |
+
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
|
| 449 |
+
timesteps_1 = timesteps_1.long()
|
| 450 |
+
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
|
| 451 |
+
|
| 452 |
+
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
|
| 453 |
+
timesteps_2 = timesteps_2.long()
|
| 454 |
+
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)
|
| 455 |
+
|
| 456 |
+
register_attention_disentangled_control(self.unet, decom_controller_1)
|
| 457 |
+
encoder_hidden_states_list_1, add_text_embeds_1, add_time_ids_1 = sdxl_prepare_input_decom(
|
| 458 |
+
set_string_list_1,
|
| 459 |
+
self.tokenizer,
|
| 460 |
+
self.tokenizer_2,
|
| 461 |
+
self.text_encoder,
|
| 462 |
+
self.text_encoder_2,
|
| 463 |
+
length = max_length,
|
| 464 |
+
bsz = train_batch_size,
|
| 465 |
+
weight_dtype = weight_dtype
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
model_pred_1 = self.unet(
|
| 469 |
+
noisy_latents_1,
|
| 470 |
+
timesteps_1,
|
| 471 |
+
encoder_hidden_states=encoder_hidden_states_list_1,
|
| 472 |
+
cross_attention_kwargs=None,
|
| 473 |
+
added_cond_kwargs={"text_embeds": add_text_embeds_1, "time_ids": add_time_ids_1},
|
| 474 |
+
return_dict=False
|
| 475 |
+
)[0]
|
| 476 |
+
|
| 477 |
+
register_attention_disentangled_control(self.unet, decom_controller_2)
|
| 478 |
+
# import pdb; pdb.set_trace()
|
| 479 |
+
encoder_hidden_states_list_2, add_text_embeds_2, add_time_ids_2 = sdxl_prepare_input_decom(
|
| 480 |
+
set_string_list_2,
|
| 481 |
+
self.tokenizer,
|
| 482 |
+
self.tokenizer_2,
|
| 483 |
+
self.text_encoder,
|
| 484 |
+
self.text_encoder_2,
|
| 485 |
+
length = max_length,
|
| 486 |
+
bsz = train_batch_size,
|
| 487 |
+
weight_dtype = weight_dtype
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
model_pred_2 = self.unet(
|
| 491 |
+
noisy_latents_2,
|
| 492 |
+
timesteps_2,
|
| 493 |
+
encoder_hidden_states = encoder_hidden_states_list_2,
|
| 494 |
+
cross_attention_kwargs=None,
|
| 495 |
+
added_cond_kwargs={"text_embeds": add_text_embeds_2, "time_ids": add_time_ids_2},
|
| 496 |
+
return_dict=False
|
| 497 |
+
)[0]
|
| 498 |
+
|
| 499 |
+
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean") /2
|
| 500 |
+
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean") /2
|
| 501 |
+
loss = loss_1 + loss_2
|
| 502 |
+
accelerator.backward(loss)
|
| 503 |
+
optimizer.step()
|
| 504 |
+
optimizer.zero_grad()
|
| 505 |
+
|
| 506 |
+
index_no_updates = torch.ones((len(self.tokenizer),), dtype=torch.bool)
|
| 507 |
+
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
| 508 |
+
with torch.no_grad():
|
| 509 |
+
accelerator.unwrap_model(self.text_encoder).get_input_embeddings().weight[
|
| 510 |
+
index_no_updates] = orig_embeds_params_1[index_no_updates]
|
| 511 |
+
index_no_updates = torch.ones((len(self.tokenizer_2),), dtype=torch.bool)
|
| 512 |
+
index_no_updates[self.min_added_id : self.max_added_id + 1] = False
|
| 513 |
+
with torch.no_grad():
|
| 514 |
+
accelerator.unwrap_model(self.text_encoder_2).get_input_embeddings().weight[
|
| 515 |
+
index_no_updates] = orig_embeds_params_2[index_no_updates]
|
| 516 |
+
|
| 517 |
+
logs = {"loss": loss.detach().item(), "lr": embedding_learning_rate}
|
| 518 |
+
progress_bar.set_postfix(**logs)
|
| 519 |
+
accelerator.log(logs, step=global_step)
|
| 520 |
+
if accelerator.sync_gradients:
|
| 521 |
+
progress_bar.update(1)
|
| 522 |
+
global_step += 1
|
| 523 |
+
|
| 524 |
+
if global_step >= max_emb_train_steps:
|
| 525 |
+
break
|
| 526 |
+
accelerator.wait_for_everyone()
|
| 527 |
+
accelerator.end_training()
|
| 528 |
+
self.text_encoder = accelerator.unwrap_model(self.text_encoder) .to(dtype = weight_dtype)
|
| 529 |
+
self.text_encoder_2 = accelerator.unwrap_model(self.text_encoder_2).to(dtype = weight_dtype)
|
| 530 |
+
|
| 531 |
+
def train_model_2imgs(
|
| 532 |
+
self,
|
| 533 |
+
image_gt_1,
|
| 534 |
+
image_gt_2,
|
| 535 |
+
set_string_list_1,
|
| 536 |
+
set_string_list_2,
|
| 537 |
+
gradient_accumulation_steps = 5,
|
| 538 |
+
max_diffusion_train_steps = 100,
|
| 539 |
+
diffusion_model_learning_rate = 1e-5,
|
| 540 |
+
train_batch_size = 1,
|
| 541 |
+
train_full_lora = False,
|
| 542 |
+
lora_rank = 4,
|
| 543 |
+
lora_alpha = 4
|
| 544 |
+
):
|
| 545 |
+
self.unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet").to(device)
|
| 546 |
+
self.unet.ca_dim = 2048
|
| 547 |
+
decom_controller_1 = GroupedCAController(mask_list = self.mask_list)
|
| 548 |
+
decom_controller_2 = GroupedCAController(mask_list = self.mask_list_2)
|
| 549 |
+
|
| 550 |
+
mixed_precision = "fp16"
|
| 551 |
+
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps,mixed_precision=mixed_precision)
|
| 552 |
+
|
| 553 |
+
weight_dtype = torch.float32
|
| 554 |
+
if accelerator.mixed_precision == "fp16":
|
| 555 |
+
weight_dtype = torch.float16
|
| 556 |
+
elif accelerator.mixed_precision == "bf16":
|
| 557 |
+
weight_dtype = torch.bfloat16
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
self.vae.requires_grad_(False)
|
| 561 |
+
self.vae.to(device, dtype=weight_dtype)
|
| 562 |
+
self.unet.requires_grad_(False)
|
| 563 |
+
self.unet.train()
|
| 564 |
+
|
| 565 |
+
self.text_encoder.requires_grad_(False)
|
| 566 |
+
self.text_encoder_2.requires_grad_(False)
|
| 567 |
+
if not train_full_lora:
|
| 568 |
+
trainable_params_list = []
|
| 569 |
+
for name, module in self.unet.named_modules():
|
| 570 |
+
module_name = type(module).__name__
|
| 571 |
+
if module_name == "Attention":
|
| 572 |
+
if module.to_k.in_features == 2048: # this is cross attention:
|
| 573 |
+
module.to_k.weight.requires_grad = True
|
| 574 |
+
trainable_params_list.append(module.to_k.weight)
|
| 575 |
+
if module.to_k.bias is not None:
|
| 576 |
+
module.to_k.bias.requires_grad = True
|
| 577 |
+
trainable_params_list.append(module.to_k.bias)
|
| 578 |
+
|
| 579 |
+
module.to_v.weight.requires_grad = True
|
| 580 |
+
trainable_params_list.append(module.to_v.weight)
|
| 581 |
+
if module.to_v.bias is not None:
|
| 582 |
+
module.to_v.bias.requires_grad = True
|
| 583 |
+
trainable_params_list.append(module.to_v.bias)
|
| 584 |
+
module.to_q.weight.requires_grad = True
|
| 585 |
+
trainable_params_list.append(module.to_q.weight)
|
| 586 |
+
if module.to_q.bias is not None:
|
| 587 |
+
module.to_q.bias.requires_grad = True
|
| 588 |
+
trainable_params_list.append(module.to_q.bias)
|
| 589 |
+
else:
|
| 590 |
+
unet_lora_config = LoraConfig(
|
| 591 |
+
r = lora_rank,
|
| 592 |
+
lora_alpha = lora_alpha,
|
| 593 |
+
init_lora_weights="gaussian",
|
| 594 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
| 595 |
+
)
|
| 596 |
+
self.unet.add_adapter(unet_lora_config)
|
| 597 |
+
print("training full parameters using lora!")
|
| 598 |
+
trainable_params_list = list(filter(lambda p: p.requires_grad, self.unet.parameters()))
|
| 599 |
+
|
| 600 |
+
self.text_encoder.to(device, dtype=weight_dtype)
|
| 601 |
+
self.text_encoder_2.to(device, dtype=weight_dtype)
|
| 602 |
+
optimizer = torch.optim.AdamW(trainable_params_list, lr=diffusion_model_learning_rate)
|
| 603 |
+
self.unet, optimizer = accelerator.prepare(self.unet, optimizer)
|
| 604 |
+
psum2 = sum(p.numel() for p in trainable_params_list)
|
| 605 |
+
|
| 606 |
+
effective_diffusion_train_steps = max_diffusion_train_steps // gradient_accumulation_steps
|
| 607 |
+
if accelerator.is_main_process:
|
| 608 |
+
accelerator.init_trackers("ModelFt", config={
|
| 609 |
+
"diffusion_model_learning_rate": diffusion_model_learning_rate,
|
| 610 |
+
"diffusion_model_optimization_steps": effective_diffusion_train_steps,
|
| 611 |
+
})
|
| 612 |
+
|
| 613 |
+
global_step = 0
|
| 614 |
+
progress_bar = tqdm(range(0, effective_diffusion_train_steps),initial=global_step, desc="ModelSteps")
|
| 615 |
+
noise_scheduler = DDPMScheduler.from_pretrained(self.model_id, subfolder="scheduler")
|
| 616 |
+
|
| 617 |
+
latents0_1 = image2latent(image_gt_1, vae = self.vae, dtype=weight_dtype)
|
| 618 |
+
latents0_1 = latents0_1.repeat(train_batch_size, 1, 1, 1)
|
| 619 |
+
|
| 620 |
+
latents0_2 = image2latent(image_gt_2, vae = self.vae, dtype=weight_dtype)
|
| 621 |
+
latents0_2 = latents0_2.repeat(train_batch_size,1, 1, 1)
|
| 622 |
+
|
| 623 |
+
with torch.no_grad():
|
| 624 |
+
encoder_hidden_states_list_1, add_text_embeds_1, add_time_ids_1 = sdxl_prepare_input_decom(
|
| 625 |
+
set_string_list_1,
|
| 626 |
+
self.tokenizer,
|
| 627 |
+
self.tokenizer_2,
|
| 628 |
+
self.text_encoder,
|
| 629 |
+
self.text_encoder_2,
|
| 630 |
+
length = max_length,
|
| 631 |
+
bsz = train_batch_size,
|
| 632 |
+
weight_dtype = weight_dtype
|
| 633 |
+
)
|
| 634 |
+
encoder_hidden_states_list_2, add_text_embeds_2, add_time_ids_2 = sdxl_prepare_input_decom(
|
| 635 |
+
set_string_list_2,
|
| 636 |
+
self.tokenizer,
|
| 637 |
+
self.tokenizer_2,
|
| 638 |
+
self.text_encoder,
|
| 639 |
+
self.text_encoder_2,
|
| 640 |
+
length = max_length,
|
| 641 |
+
bsz = train_batch_size,
|
| 642 |
+
weight_dtype = weight_dtype
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
for _ in range(max_diffusion_train_steps):
|
| 646 |
+
with accelerator.accumulate(self.unet):
|
| 647 |
+
latents_1 = latents0_1.clone().detach()
|
| 648 |
+
noise_1 = torch.randn_like(latents_1)
|
| 649 |
+
bsz = latents_1.shape[0]
|
| 650 |
+
timesteps_1 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_1.device)
|
| 651 |
+
timesteps_1 = timesteps_1.long()
|
| 652 |
+
noisy_latents_1 = noise_scheduler.add_noise(latents_1, noise_1, timesteps_1)
|
| 653 |
+
|
| 654 |
+
latents_2 = latents0_2.clone().detach()
|
| 655 |
+
noise_2 = torch.randn_like(latents_2)
|
| 656 |
+
bsz = latents_2.shape[0]
|
| 657 |
+
timesteps_2 = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents_2.device)
|
| 658 |
+
timesteps_2 = timesteps_2.long()
|
| 659 |
+
noisy_latents_2 = noise_scheduler.add_noise(latents_2, noise_2, timesteps_2)
|
| 660 |
+
|
| 661 |
+
register_attention_disentangled_control(self.unet, decom_controller_1)
|
| 662 |
+
model_pred_1 = self.unet(
|
| 663 |
+
noisy_latents_1,
|
| 664 |
+
timesteps_1,
|
| 665 |
+
encoder_hidden_states = encoder_hidden_states_list_1,
|
| 666 |
+
cross_attention_kwargs = None,
|
| 667 |
+
return_dict = False,
|
| 668 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds_1, "time_ids": add_time_ids_1}
|
| 669 |
+
)[0]
|
| 670 |
+
|
| 671 |
+
register_attention_disentangled_control(self.unet, decom_controller_2)
|
| 672 |
+
model_pred_2 = self.unet(
|
| 673 |
+
noisy_latents_2,
|
| 674 |
+
timesteps_2,
|
| 675 |
+
encoder_hidden_states = encoder_hidden_states_list_2,
|
| 676 |
+
cross_attention_kwargs = None,
|
| 677 |
+
return_dict=False,
|
| 678 |
+
added_cond_kwargs={"text_embeds": add_text_embeds_2, "time_ids": add_time_ids_2}
|
| 679 |
+
)[0]
|
| 680 |
+
|
| 681 |
+
loss_1 = F.mse_loss(model_pred_1.float(), noise_1.float(), reduction="mean")
|
| 682 |
+
loss_2 = F.mse_loss(model_pred_2.float(), noise_2.float(), reduction="mean")
|
| 683 |
+
loss = loss_1 + loss_2
|
| 684 |
+
accelerator.backward(loss)
|
| 685 |
+
optimizer.step()
|
| 686 |
+
optimizer.zero_grad()
|
| 687 |
+
|
| 688 |
+
|
| 689 |
+
logs = {"loss": loss.detach().item(), "lr": diffusion_model_learning_rate}
|
| 690 |
+
progress_bar.set_postfix(**logs)
|
| 691 |
+
accelerator.log(logs, step=global_step)
|
| 692 |
+
if accelerator.sync_gradients:
|
| 693 |
+
progress_bar.update(1)
|
| 694 |
+
global_step += 1
|
| 695 |
+
|
| 696 |
+
if global_step >=max_diffusion_train_steps:
|
| 697 |
+
break
|
| 698 |
+
accelerator.wait_for_everyone()
|
| 699 |
+
accelerator.end_training()
|
| 700 |
+
self.unet = accelerator.unwrap_model(self.unet).to(dtype = weight_dtype)
|
| 701 |
+
|
| 702 |
+
@torch.no_grad()
|
| 703 |
+
def backward_zT_to_z0_euler_decom(
|
| 704 |
+
self,
|
| 705 |
+
zT,
|
| 706 |
+
cond_emb_list,
|
| 707 |
+
cond_add_text_embeds,
|
| 708 |
+
add_time_ids,
|
| 709 |
+
uncond_emb=None,
|
| 710 |
+
guidance_scale = 1,
|
| 711 |
+
num_sampling_steps = 20,
|
| 712 |
+
cond_controller = None,
|
| 713 |
+
uncond_controller = None,
|
| 714 |
+
mask_hard = None,
|
| 715 |
+
mask_soft = None,
|
| 716 |
+
orig_image = None,
|
| 717 |
+
return_intermediate = False,
|
| 718 |
+
strength = 1
|
| 719 |
+
):
|
| 720 |
+
latent_cur = zT
|
| 721 |
+
if uncond_emb is None:
|
| 722 |
+
uncond_emb = torch.zeros(zT.shape[0], 77, 2048).to(dtype = zT.dtype, device = zT.device)
|
| 723 |
+
uncond_add_text_embeds = torch.zeros(1, 1280).to(dtype = zT.dtype, device = zT.device)
|
| 724 |
+
if mask_soft is not None:
|
| 725 |
+
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
|
| 726 |
+
length = init_latents_orig.shape[-1]
|
| 727 |
+
noise = torch.randn_like(init_latents_orig)
|
| 728 |
+
mask_soft = torch.nn.functional.interpolate(mask_soft.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###
|
| 729 |
+
if mask_hard is not None:
|
| 730 |
+
init_latents_orig = image2latent(orig_image, self.vae, dtype=self.vae.dtype)
|
| 731 |
+
length = init_latents_orig.shape[-1]
|
| 732 |
+
noise = torch.randn_like(init_latents_orig)
|
| 733 |
+
mask_hard = torch.nn.functional.interpolate(mask_hard.float().unsqueeze(0).unsqueeze(0), (length, length)).to(self.vae.dtype) ###
|
| 734 |
+
|
| 735 |
+
intermediate_list = [latent_cur.detach()]
|
| 736 |
+
for i in tqdm(range(num_sampling_steps)):
|
| 737 |
+
t = self.scheduler.timesteps[i]
|
| 738 |
+
latent_input = self.scheduler.scale_model_input(latent_cur, t)
|
| 739 |
+
|
| 740 |
+
register_attention_disentangled_control(self.unet, uncond_controller)
|
| 741 |
+
noise_pred_uncond = self.unet(latent_input, t,
|
| 742 |
+
encoder_hidden_states=uncond_emb,
|
| 743 |
+
added_cond_kwargs={"text_embeds": uncond_add_text_embeds, "time_ids": add_time_ids},
|
| 744 |
+
return_dict=False,)[0]
|
| 745 |
+
|
| 746 |
+
register_attention_disentangled_control(self.unet, cond_controller)
|
| 747 |
+
noise_pred_cond = self.unet(latent_input, t,
|
| 748 |
+
encoder_hidden_states=cond_emb_list,
|
| 749 |
+
added_cond_kwargs={"text_embeds": cond_add_text_embeds, "time_ids": add_time_ids},
|
| 750 |
+
return_dict=False,)[0]
|
| 751 |
+
|
| 752 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
| 753 |
+
latent_cur = self.scheduler.step(noise_pred, t, latent_cur, generator = None, return_dict=False)[0]
|
| 754 |
+
if return_intermediate is True:
|
| 755 |
+
intermediate_list.append(latent_cur)
|
| 756 |
+
if mask_hard is not None and mask_soft is not None and i <= strength *num_sampling_steps:
|
| 757 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
| 758 |
+
mask = mask_soft.to(latent_cur.device, latent_cur.dtype) + mask_hard.to(latent_cur.device, latent_cur.dtype)
|
| 759 |
+
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
| 760 |
+
|
| 761 |
+
elif mask_hard is not None and mask_soft is not None and i > strength *num_sampling_steps:
|
| 762 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
| 763 |
+
mask = mask_hard.to(latent_cur.device, latent_cur.dtype)
|
| 764 |
+
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
| 765 |
+
|
| 766 |
+
elif mask_hard is None and mask_soft is not None and i <= strength *num_sampling_steps:
|
| 767 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
| 768 |
+
mask = mask_soft.to(latent_cur.device, latent_cur.dtype)
|
| 769 |
+
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
| 770 |
+
|
| 771 |
+
elif mask_hard is None and mask_soft is not None and i > strength *num_sampling_steps:
|
| 772 |
+
pass
|
| 773 |
+
|
| 774 |
+
elif mask_hard is not None and mask_soft is None:
|
| 775 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
| 776 |
+
mask = mask_hard.to(latent_cur.dtype)
|
| 777 |
+
latent_cur = (init_latents_proper * mask) + (latent_cur * (1 - mask))
|
| 778 |
+
|
| 779 |
+
else: # hard and soft are both none
|
| 780 |
+
pass
|
| 781 |
+
|
| 782 |
+
if return_intermediate is True:
|
| 783 |
+
return latent_cur, intermediate_list
|
| 784 |
+
else:
|
| 785 |
+
return latent_cur
|
| 786 |
+
|
| 787 |
+
@torch.no_grad()
|
| 788 |
+
def sampling(
|
| 789 |
+
self,
|
| 790 |
+
set_string_list,
|
| 791 |
+
cond_controller = None,
|
| 792 |
+
uncond_controller = None,
|
| 793 |
+
guidance_scale = 7,
|
| 794 |
+
num_sampling_steps = 20,
|
| 795 |
+
mask_hard = None,
|
| 796 |
+
mask_soft = None,
|
| 797 |
+
orig_image = None,
|
| 798 |
+
strength = 1.,
|
| 799 |
+
num_imgs = 1,
|
| 800 |
+
normal_token_id_list = [],
|
| 801 |
+
seed = 1
|
| 802 |
+
):
|
| 803 |
+
weight_dtype = torch.float16
|
| 804 |
+
self.scheduler.set_timesteps(num_sampling_steps)
|
| 805 |
+
self.unet.to(device, dtype=weight_dtype)
|
| 806 |
+
self.vae.to(device, dtype=weight_dtype)
|
| 807 |
+
self.text_encoder.to(device, dtype=weight_dtype)
|
| 808 |
+
self.text_encoder_2.to(device, dtype=weight_dtype)
|
| 809 |
+
torch.manual_seed(seed)
|
| 810 |
+
torch.cuda.manual_seed(seed)
|
| 811 |
+
|
| 812 |
+
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 813 |
+
zT = torch.randn(num_imgs, 4, self.resolution//vae_scale_factor,self.resolution//vae_scale_factor).to(device,dtype=weight_dtype)
|
| 814 |
+
zT = zT * self.scheduler.init_noise_sigma
|
| 815 |
+
|
| 816 |
+
cond_emb_list, cond_add_text_embeds, add_time_ids = sdxl_prepare_input_decom(
|
| 817 |
+
set_string_list,
|
| 818 |
+
self.tokenizer,
|
| 819 |
+
self.tokenizer_2,
|
| 820 |
+
self.text_encoder,
|
| 821 |
+
self.text_encoder_2,
|
| 822 |
+
length = max_length,
|
| 823 |
+
bsz = num_imgs,
|
| 824 |
+
weight_dtype = weight_dtype,
|
| 825 |
+
normal_token_id_list = normal_token_id_list
|
| 826 |
+
)
|
| 827 |
+
|
| 828 |
+
z0 = self.backward_zT_to_z0_euler_decom(zT, cond_emb_list, cond_add_text_embeds, add_time_ids,
|
| 829 |
+
guidance_scale = guidance_scale, num_sampling_steps = num_sampling_steps,
|
| 830 |
+
cond_controller = cond_controller, uncond_controller = uncond_controller,
|
| 831 |
+
mask_hard = mask_hard, mask_soft = mask_soft, orig_image =orig_image, strength = strength
|
| 832 |
+
)
|
| 833 |
+
x0 = latent2image(z0, vae = self.vae)
|
| 834 |
+
return x0
|
| 835 |
+
|
| 836 |
+
@torch.no_grad()
|
| 837 |
+
def inference_with_mask(
|
| 838 |
+
self,
|
| 839 |
+
save_path,
|
| 840 |
+
guidance_scale = 3,
|
| 841 |
+
num_sampling_steps = 50,
|
| 842 |
+
strength = 1,
|
| 843 |
+
mask_soft = None,
|
| 844 |
+
mask_hard= None,
|
| 845 |
+
orig_image=None,
|
| 846 |
+
mask_list = None,
|
| 847 |
+
num_imgs = 1,
|
| 848 |
+
seed = 1,
|
| 849 |
+
set_string_list = None
|
| 850 |
+
):
|
| 851 |
+
if mask_list is not None:
|
| 852 |
+
mask_list = [m.to(device) for m in mask_list]
|
| 853 |
+
else:
|
| 854 |
+
mask_list = self.mask_list
|
| 855 |
+
if set_string_list is not None:
|
| 856 |
+
self.set_string_list = set_string_list
|
| 857 |
+
|
| 858 |
+
if mask_hard is not None and mask_soft is not None:
|
| 859 |
+
check_mask_overlap_torch(mask_hard, mask_soft)
|
| 860 |
+
null_controller = DummyController()
|
| 861 |
+
decom_controller = GroupedCAController(mask_list = mask_list)
|
| 862 |
+
x0 = self.sampling(
|
| 863 |
+
self.set_string_list,
|
| 864 |
+
guidance_scale = guidance_scale,
|
| 865 |
+
num_sampling_steps = num_sampling_steps,
|
| 866 |
+
strength = strength,
|
| 867 |
+
cond_controller = decom_controller,
|
| 868 |
+
uncond_controller = null_controller,
|
| 869 |
+
mask_soft = mask_soft,
|
| 870 |
+
mask_hard = mask_hard,
|
| 871 |
+
orig_image = orig_image,
|
| 872 |
+
num_imgs = num_imgs,
|
| 873 |
+
seed = seed
|
| 874 |
+
)
|
| 875 |
+
save_images(x0, save_path)
|