Spaces:
Sleeping
Sleeping
File size: 8,337 Bytes
daa36b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
from functools import lru_cache
from hffs.fs import HfFileSystem
from typing import List, Tuple, Callable
import pandas as pd
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
from functools import partial
from io import StringIO
from tqdm.contrib.concurrent import thread_map
from datasets import Features
class AppError(RuntimeError):
pass
PAGE_SIZE = 20
@lru_cache(maxsize=128)
def get_parquet_fs(dataset: str) -> HfFileSystem:
try:
fs = HfFileSystem(dataset, repo_type="dataset", revision="refs/convert/parquet")
if any(fs.isfile(path) for path in fs.ls("") if not path.startswith(".")):
raise AppError(f"Parquet export doesn't exist for '{dataset}'.")
return fs
except:
raise AppError(f"Parquet export doesn't exist for '{dataset}'.")
@lru_cache(maxsize=128)
def get_parquet_configs(dataset: str) -> List[str]:
fs = get_parquet_fs(dataset)
return [path for path in fs.ls("") if fs.isdir(path)]
def _sorted_split_key(split: str) -> str:
return split if not split.startswith("train") else chr(0) + split # always "train" first
@lru_cache(maxsize=128)
def get_parquet_splits(dataset: str, config: str) -> List[str]:
fs = get_parquet_fs(dataset)
all_parts = [path.rsplit(".", 1)[0].split("-") for path in fs.glob(f"{config}/*.parquet")]
return sorted(set(parts[-4] if len(parts) > 3 and parts[-2] == "of" else parts[-1] for parts in all_parts), key=_sorted_split_key)
def sanitize_inputs(dataset: str, config: str, split: str, page: str) -> Tuple[str, str, str, int]:
try:
page = int(page)
assert page > 0
except:
raise AppError(f"Bad page: {page}")
if not dataset:
raise AppError("Empty dataset name")
if not config:
raise AppError(f"Empty config. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
if not split:
raise AppError(f"Empty split. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
return dataset, config, split, int(page)
RowGroupReaders = List[Callable[[], pa.Table]]
@lru_cache(maxsize=128)
def index(dataset: str, config: str, split: str) -> Tuple[np.ndarray, RowGroupReaders, int, str]:
fs = get_parquet_fs(dataset)
sources = fs.glob(f"{config}/*-{split}.parquet") + fs.glob(f"{config}/*-{split}-*-of-*.parquet")
if not sources:
if config not in get_parquet_configs(dataset):
raise AppError(f"Invalid config {config}. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
else:
raise AppError(f"Invalid split {split}. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
all_pf: List[pq.ParquetFile] = thread_map(partial(pq.ParquetFile, filesystem=fs), sources)
features = Features.from_arrow_schema(all_pf[0].schema.to_arrow_schema())
columns = [col for col in features if all(bad_type not in str(features[col]) for bad_type in ["Image(", "Audio(", "'binary'"])]
info = "" if len(columns) == len(features) else f"Some columns are not supported yet: {sorted(set(features) - set(columns))}"
rg_offsets = np.cumsum([pf.metadata.row_group(i).num_rows for pf in all_pf for i in range(pf.metadata.num_row_groups)])
rg_readers = [partial(pf.read_row_group, i, columns=columns) for pf in all_pf for i in range(pf.metadata.num_row_groups)]
max_page = rg_offsets[-1] // PAGE_SIZE
return rg_offsets, rg_readers, max_page, info
def query(page: int, page_size: int, rg_offsets: np.ndarray, rg_readers: RowGroupReaders) -> pd.DataFrame:
start_row, end_row = (page - 1) * page_size, page * page_size
start_rg, end_rg = np.searchsorted(rg_offsets, [start_row, end_row], side="right")
if page < 1 or end_rg >= len(rg_readers):
raise AppError(f"Page {page} does not exist")
pa_table = pa.concat_tables([rg_readers[i]() for i in range(start_rg, end_rg + 1)])
offset = start_row - rg_offsets[start_rg - 1] if start_rg else start_row
pa_table = pa_table.slice(offset, end_row - start_row)
return pa_table.to_pandas()
@lru_cache(maxsize=128)
def get_page(dataset: str, config: str, split: str, page: str) -> Tuple[str, int, str]:
dataset, config, split, page = sanitize_inputs(dataset, config, split, page)
rg_offsets, rg_readers, max_page, info = index(dataset, config, split)
df = query(page, PAGE_SIZE, rg_offsets=rg_offsets, rg_readers=rg_readers)
buf = StringIO()
df.to_json(buf, lines=True, orient="records")
return buf.getvalue(), max_page, info
with gr.Blocks() as demo:
gr.Markdown("# 📖 Dataset Explorer\n\nAccess any slice of data of any dataset on the [Hugging Face Dataset Hub](https://huggingface.co/datasets)")
cp_dataset = gr.Textbox("squad", label="Pick a dataset", placeholder="squad")
cp_go = gr.Button("Explore")
cp_config = gr.Dropdown(["plain_text"], value="plain_text", label="Config", visible=False)
cp_split = gr.Dropdown(["train", "validation"], value="train", label="Split", visible=False)
with gr.Row():
cp_page = gr.Textbox("1", label="Page", placeholder="1", visible=False)
cp_goto_page = gr.Button("Go to page", visible=False)
cp_error = gr.Markdown("", visible=False)
cp_info = gr.Markdown("", visible=False)
cp_result = gr.Markdown("", visible=False)
def show_error(message: str) -> dict():
return {
cp_error: gr.update(visible=True, value=f"## ❌ Error:\n\n{message}"),
cp_info: gr.update(visible=False, value=""),
cp_result: gr.update(visible=False, value=""),
}
def show_dataset_at_config_and_split_and_page(dataset: str, config: str, split: str, page: str) -> dict:
try:
jsonl_result, max_page, info = get_page(dataset, config, split, page)
info = f"({info})" if info else ""
return {
cp_result: gr.update(visible=True, value=f"```json\n{jsonl_result}\n```"),
cp_info: gr.update(visible=True, value=f"Page {page}/{max_page}) {info}"),
cp_error: gr.update(visible=False, value="")
}
except AppError as err:
return show_error(str(err))
def show_dataset_at_config_and_split(dataset: str, config: str, split: str) -> dict:
try:
return {
**show_dataset_at_config_and_split_and_page(dataset, config, split, "1"),
cp_page: gr.update(value="1", visible=True),
cp_goto_page: gr.update(visible=True),
}
except AppError as err:
return show_error(str(err))
def show_dataset_at_config(dataset: str, config: str) -> dict:
try:
splits = get_parquet_splits(dataset, config)
if not splits:
raise AppError(f"Dataset {dataset} with config {config} has no splits.")
else:
split = splits[0]
return {
**show_dataset_at_config_and_split(dataset, config, split),
cp_split: gr.update(value=split, choices=splits, visible=len(splits) > 1),
}
except AppError as err:
return show_error(str(err))
def show_dataset(dataset: str) -> dict:
try:
configs = get_parquet_configs(dataset)
if not configs:
raise AppError(f"Dataset {dataset} has no configs.")
else:
config = configs[0]
return {
**show_dataset_at_config(dataset, config),
cp_config: gr.update(value=config, choices=configs, visible=len(configs) > 1),
}
except AppError as err:
return show_error(str(err))
all_outputs = [cp_config, cp_split, cp_page, cp_goto_page, cp_result, cp_info, cp_error]
cp_go.click(show_dataset, inputs=[cp_dataset], outputs=all_outputs)
cp_config.change(show_dataset_at_config, inputs=[cp_dataset, cp_config], outputs=all_outputs)
cp_split.change(show_dataset_at_config_and_split, inputs=[cp_dataset, cp_config, cp_split], outputs=all_outputs)
cp_goto_page.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs)
if __name__ == "__main__":
demo.launch()
|