File size: 8,337 Bytes
daa36b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
from functools import lru_cache
from hffs.fs import HfFileSystem
from typing import List, Tuple, Callable
import pandas as pd
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
from functools import partial
from io import StringIO
from tqdm.contrib.concurrent import thread_map
from datasets import Features



class AppError(RuntimeError):
    pass


PAGE_SIZE = 20


@lru_cache(maxsize=128)
def get_parquet_fs(dataset: str) -> HfFileSystem:
    try:
        fs = HfFileSystem(dataset, repo_type="dataset", revision="refs/convert/parquet")
        if any(fs.isfile(path) for path in fs.ls("") if not path.startswith(".")):
            raise AppError(f"Parquet export doesn't exist for '{dataset}'.")
        return fs
    except:
        raise AppError(f"Parquet export doesn't exist for '{dataset}'.")


@lru_cache(maxsize=128)
def get_parquet_configs(dataset: str) -> List[str]:
    fs = get_parquet_fs(dataset)
    return [path for path in fs.ls("") if fs.isdir(path)]


def _sorted_split_key(split: str) -> str:
    return split if not split.startswith("train") else chr(0) + split  # always "train" first


@lru_cache(maxsize=128)
def get_parquet_splits(dataset: str, config: str) -> List[str]:
    fs = get_parquet_fs(dataset)
    all_parts = [path.rsplit(".", 1)[0].split("-") for path in fs.glob(f"{config}/*.parquet")]
    return sorted(set(parts[-4] if len(parts) > 3 and parts[-2] == "of" else parts[-1] for parts in all_parts), key=_sorted_split_key)

def sanitize_inputs(dataset: str, config: str, split: str, page:  str) -> Tuple[str, str, str, int]:
    try:
        page = int(page)
        assert page > 0
    except:
        raise AppError(f"Bad page: {page}")
    if not dataset:
        raise AppError("Empty dataset name")
    if not config:
        raise AppError(f"Empty config. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
    if not split:
        raise AppError(f"Empty split. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
    return dataset, config, split, int(page)


RowGroupReaders = List[Callable[[], pa.Table]]


@lru_cache(maxsize=128)
def index(dataset: str, config: str, split: str) -> Tuple[np.ndarray, RowGroupReaders, int, str]:
    fs = get_parquet_fs(dataset)
    sources = fs.glob(f"{config}/*-{split}.parquet") + fs.glob(f"{config}/*-{split}-*-of-*.parquet")
    if not sources:
        if config not in get_parquet_configs(dataset):
            raise AppError(f"Invalid config {config}. Available configs are: {', '.join(get_parquet_configs(dataset))}.")
        else:
            raise AppError(f"Invalid split {split}. Available splits are: {', '.join(get_parquet_splits(dataset, config))}.")
    all_pf: List[pq.ParquetFile] = thread_map(partial(pq.ParquetFile, filesystem=fs), sources)
    features = Features.from_arrow_schema(all_pf[0].schema.to_arrow_schema())
    columns = [col for col in features if all(bad_type not in str(features[col]) for bad_type in ["Image(", "Audio(", "'binary'"])]
    info = "" if len(columns) == len(features) else f"Some columns are not supported yet: {sorted(set(features) - set(columns))}"
    rg_offsets = np.cumsum([pf.metadata.row_group(i).num_rows for pf in all_pf for i in range(pf.metadata.num_row_groups)])
    rg_readers = [partial(pf.read_row_group, i, columns=columns) for pf in all_pf for i in range(pf.metadata.num_row_groups)]
    max_page = rg_offsets[-1] // PAGE_SIZE
    return rg_offsets, rg_readers, max_page, info


def query(page: int, page_size: int, rg_offsets: np.ndarray, rg_readers: RowGroupReaders) -> pd.DataFrame:
    start_row, end_row = (page - 1) * page_size, page * page_size
    start_rg, end_rg = np.searchsorted(rg_offsets, [start_row, end_row], side="right")
    if page < 1 or end_rg >= len(rg_readers):
        raise AppError(f"Page {page} does not exist")
    pa_table = pa.concat_tables([rg_readers[i]() for i in range(start_rg, end_rg + 1)])
    offset = start_row - rg_offsets[start_rg - 1] if start_rg else start_row
    pa_table = pa_table.slice(offset, end_row - start_row)
    return pa_table.to_pandas()


@lru_cache(maxsize=128)
def get_page(dataset: str, config: str, split: str, page: str) -> Tuple[str, int, str]:
    dataset, config, split, page = sanitize_inputs(dataset, config, split, page)
    rg_offsets, rg_readers, max_page, info = index(dataset, config, split)
    df = query(page, PAGE_SIZE, rg_offsets=rg_offsets, rg_readers=rg_readers)
    buf = StringIO()
    df.to_json(buf, lines=True, orient="records")
    return buf.getvalue(), max_page, info


with gr.Blocks() as demo:
    gr.Markdown("# 📖 Dataset Explorer\n\nAccess any slice of data of any dataset on the [Hugging Face Dataset Hub](https://huggingface.co/datasets)")
    cp_dataset = gr.Textbox("squad", label="Pick a dataset", placeholder="squad")
    cp_go = gr.Button("Explore")
    cp_config = gr.Dropdown(["plain_text"], value="plain_text", label="Config", visible=False)
    cp_split = gr.Dropdown(["train", "validation"], value="train", label="Split", visible=False)
    with gr.Row():
        cp_page = gr.Textbox("1", label="Page", placeholder="1", visible=False)
        cp_goto_page = gr.Button("Go to page", visible=False)
    cp_error = gr.Markdown("", visible=False)
    cp_info = gr.Markdown("", visible=False)
    cp_result = gr.Markdown("", visible=False)

    def show_error(message: str) -> dict():
        return {
            cp_error: gr.update(visible=True, value=f"## ❌ Error:\n\n{message}"),
            cp_info: gr.update(visible=False, value=""),
            cp_result: gr.update(visible=False, value=""),
        }
        
    def show_dataset_at_config_and_split_and_page(dataset: str, config: str, split: str, page: str) -> dict:
        try:
            jsonl_result, max_page, info = get_page(dataset, config, split, page)
            info = f"({info})" if info else ""
            return {
                cp_result: gr.update(visible=True, value=f"```json\n{jsonl_result}\n```"),
                cp_info: gr.update(visible=True, value=f"Page {page}/{max_page}) {info}"),
                cp_error: gr.update(visible=False, value="")
            }
        except AppError as err:
            return show_error(str(err))

    def show_dataset_at_config_and_split(dataset: str, config: str, split: str) -> dict:
        try:
            return {
                **show_dataset_at_config_and_split_and_page(dataset, config, split, "1"),
                cp_page: gr.update(value="1", visible=True),
                cp_goto_page: gr.update(visible=True),
            }
        except AppError as err:
            return show_error(str(err))

    def show_dataset_at_config(dataset: str, config: str) -> dict:
        try:
            splits = get_parquet_splits(dataset, config)
            if not splits:
                raise AppError(f"Dataset {dataset} with config {config} has no splits.")
            else:
                split = splits[0]
            return {
                **show_dataset_at_config_and_split(dataset, config, split),
                cp_split: gr.update(value=split, choices=splits, visible=len(splits) > 1),
            }
        except AppError as err:
            return show_error(str(err))

    def show_dataset(dataset: str) -> dict:
        try:
            configs = get_parquet_configs(dataset)
            if not configs:
                raise AppError(f"Dataset {dataset} has no configs.")
            else:
                config = configs[0]
            return {
                **show_dataset_at_config(dataset, config),
                cp_config: gr.update(value=config, choices=configs, visible=len(configs) > 1),
            }
        except AppError as err:
            return show_error(str(err))

    all_outputs = [cp_config, cp_split, cp_page, cp_goto_page, cp_result, cp_info, cp_error]
    cp_go.click(show_dataset, inputs=[cp_dataset], outputs=all_outputs)
    cp_config.change(show_dataset_at_config, inputs=[cp_dataset, cp_config], outputs=all_outputs)
    cp_split.change(show_dataset_at_config_and_split, inputs=[cp_dataset, cp_config, cp_split], outputs=all_outputs)
    cp_goto_page.click(show_dataset_at_config_and_split_and_page, inputs=[cp_dataset, cp_config, cp_split, cp_page], outputs=all_outputs)


if __name__ == "__main__":
    demo.launch()