Spaces:
Sleeping
Sleeping
๐ add auth token and experimental models
Browse filesSigned-off-by: peter szemraj <[email protected]>
- app.py +3 -2
- summarize.py +6 -1
app.py
CHANGED
@@ -64,8 +64,9 @@ nltk.download("popular", force=True, quiet=True)
|
|
64 |
MODEL_OPTIONS = [
|
65 |
"pszemraj/long-t5-tglobal-base-16384-book-summary",
|
66 |
"pszemraj/long-t5-tglobal-base-sci-simplify",
|
67 |
-
"pszemraj/long-t5-tglobal-base-
|
68 |
-
"pszemraj/long-t5-tglobal-base-
|
|
|
69 |
"pszemraj/pegasus-x-large-book-summary",
|
70 |
] # models users can choose from
|
71 |
BEAM_OPTIONS = [2, 3, 4] # beam sizes users can choose from
|
|
|
64 |
MODEL_OPTIONS = [
|
65 |
"pszemraj/long-t5-tglobal-base-16384-book-summary",
|
66 |
"pszemraj/long-t5-tglobal-base-sci-simplify",
|
67 |
+
"pszemraj/long-t5-tglobal-base-summary-souffle-16384-loD",
|
68 |
+
"pszemraj/long-t5-tglobal-base-summary-souffle-16384-neftune_0.3",
|
69 |
+
"pszemraj/long-t5-tglobal-base-summary-souffle-16384-neftune_0.6",
|
70 |
"pszemraj/pegasus-x-large-book-summary",
|
71 |
] # models users can choose from
|
72 |
BEAM_OPTIONS = [2, 3, 4] # beam sizes users can choose from
|
summarize.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
summarize - a module for summarizing text using a model from the Hugging Face model hub
|
3 |
"""
|
4 |
import logging
|
|
|
5 |
import pprint as pp
|
6 |
|
7 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
|
@@ -23,10 +24,14 @@ def load_model_and_tokenizer(model_name: str) -> tuple:
|
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
25 |
model_name,
|
|
|
26 |
).to(device)
|
27 |
model = model.eval()
|
28 |
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
30 |
|
31 |
logging.info(f"Loaded model {model_name} to {device}")
|
32 |
|
|
|
2 |
summarize - a module for summarizing text using a model from the Hugging Face model hub
|
3 |
"""
|
4 |
import logging
|
5 |
+
import os
|
6 |
import pprint as pp
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
|
|
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
26 |
model_name,
|
27 |
+
use_auth_token=os.environ.get("HF_TOKEN", None),
|
28 |
).to(device)
|
29 |
model = model.eval()
|
30 |
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
32 |
+
model_name,
|
33 |
+
use_auth_token=os.environ.get("HF_TOKEN", None),
|
34 |
+
)
|
35 |
|
36 |
logging.info(f"Loaded model {model_name} to {device}")
|
37 |
|