Realcat's picture
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
import collections.abc as collections
from pathlib import Path
from typing import Optional, Tuple
import cv2
import kornia
import numpy as np
import torch
from omegaconf import OmegaConf
class ImagePreprocessor:
default_conf = {
"resize": None, # target edge length, None for no resizing
"edge_divisible_by": None,
"side": "long",
"interpolation": "bilinear",
"align_corners": None,
"antialias": True,
"square_pad": False,
"add_padding_mask": False,
}
def __init__(self, conf) -> None:
super().__init__()
default_conf = OmegaConf.create(self.default_conf)
OmegaConf.set_struct(default_conf, True)
self.conf = OmegaConf.merge(default_conf, conf)
def __call__(self, img: torch.Tensor, interpolation: Optional[str] = None) -> dict:
"""Resize and preprocess an image, return image and resize scale"""
h, w = img.shape[-2:]
size = h, w
if self.conf.resize is not None:
if interpolation is None:
interpolation = self.conf.interpolation
size = self.get_new_image_size(h, w)
img = kornia.geometry.transform.resize(
img,
size,
side=self.conf.side,
antialias=self.conf.antialias,
align_corners=self.conf.align_corners,
interpolation=interpolation,
)
scale = torch.Tensor([img.shape[-1] / w, img.shape[-2] / h]).to(img)
T = np.diag([scale[0], scale[1], 1])
data = {
"scales": scale,
"image_size": np.array(size[::-1]),
"transform": T,
"original_image_size": np.array([w, h]),
}
if self.conf.square_pad:
sl = max(img.shape[-2:])
data["image"] = torch.zeros(
*img.shape[:-2], sl, sl, device=img.device, dtype=img.dtype
)
data["image"][:, : img.shape[-2], : img.shape[-1]] = img
if self.conf.add_padding_mask:
data["padding_mask"] = torch.zeros(
*img.shape[:-3], 1, sl, sl, device=img.device, dtype=torch.bool
)
data["padding_mask"][:, : img.shape[-2], : img.shape[-1]] = True
else:
data["image"] = img
return data
def load_image(self, image_path: Path) -> dict:
return self(load_image(image_path))
def get_new_image_size(
self,
h: int,
w: int,
) -> Tuple[int, int]:
side = self.conf.side
if isinstance(self.conf.resize, collections.Iterable):
assert len(self.conf.resize) == 2
return tuple(self.conf.resize)
side_size = self.conf.resize
aspect_ratio = w / h
if side not in ("short", "long", "vert", "horz"):
raise ValueError(
f"side can be one of 'short', 'long', 'vert', and 'horz'. Got '{side}'"
)
if side == "vert":
size = side_size, int(side_size * aspect_ratio)
elif side == "horz":
size = int(side_size / aspect_ratio), side_size
elif (side == "short") ^ (aspect_ratio < 1.0):
size = side_size, int(side_size * aspect_ratio)
else:
size = int(side_size / aspect_ratio), side_size
if self.conf.edge_divisible_by is not None:
df = self.conf.edge_divisible_by
size = list(map(lambda x: int(x // df * df), size))
return size
def read_image(path: Path, grayscale: bool = False) -> np.ndarray:
"""Read an image from path as RGB or grayscale"""
if not Path(path).exists():
raise FileNotFoundError(f"No image at path {path}.")
mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
image = cv2.imread(str(path), mode)
if image is None:
raise IOError(f"Could not read image at {path}.")
if not grayscale:
image = image[..., ::-1]
return image
def numpy_image_to_torch(image: np.ndarray) -> torch.Tensor:
"""Normalize the image tensor and reorder the dimensions."""
if image.ndim == 3:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
elif image.ndim == 2:
image = image[None] # add channel axis
else:
raise ValueError(f"Not an image: {image.shape}")
return torch.tensor(image / 255.0, dtype=torch.float)
def load_image(path: Path, grayscale=False) -> torch.Tensor:
image = read_image(path, grayscale=grayscale)
return numpy_image_to_torch(image)